首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
从 6 0种球形蛋白质的结构出发 ,采用Miyazawa Jernigan相互作用矩阵 ,计算了蛋白质分子中氨基酸之间的相互作用能 .发现构成蛋白质分子的 2 0种氨基酸可分成疏水 (Hydrophobic ,H)、中性 (Neutral,N)、亲水(Hydrophilic ,P)基团 .在计算它们之间相互作用能的基础上 ,建立了蛋白质分子的HNP格点模型 .用这个模型计算了二维蛋白质分子在自然态 (Nativestate)时的构象性质 .同时研究了氨基酸序列为HHNHNPNHPP HPNPPHPHPPHHPHNH的折叠过程 ,得到其基态能量为 - 6 4 89RT .这能为研究球形蛋白质的构象性质及折叠过程提供一种更合理的格点模型  相似文献   

2.
海藻糖和氨基酸之间相互作用的分子动力学模拟   总被引:1,自引:0,他引:1  
虽然海藻糖已经广泛用于蛋白质稳定性研究,但海藻糖稳定蛋白质的作用机理尚不清晰.本文利用全原子分子动力学模拟研究了20种常见氨基酸和海藻糖之间的分子机理.结果表明,所有氨基酸,尤其是极性和带电氨基酸,均优先与水分子结合.相反,仅有疏水性氨基酸与海藻糖发生相互作用,尤其是芳香族和疏水性氨基酸的侧链更易于和海藻糖接触.所有氨基酸的主链与水分子接触的趋势一致.虽然氨基酸和海藻糖与水之间均形成氢键,但氨基酸和海藻糖之间的氢键相互作用要弱于氨基酸和水之间的氢键相互作用.上述分子模拟的结果对于海藻糖稳定蛋白质作用机理的解析及高效蛋白质稳定剂的理性设计具有非常重要的理论指导意义.  相似文献   

3.
虽然海藻糖已经广泛用于蛋白质稳定性研究,但海藻糖稳定蛋白质的作用机理尚不清晰. 本文利用全原子分子动力学模拟研究了20种常见氨基酸和海藻糖之间的分子机理. 结果表明,所有氨基酸,尤其是极性和带电氨基酸,均优先与水分子结合. 相反,仅有疏水性氨基酸与海藻糖发生相互作用,尤其是芳香族和疏水性氨基酸的侧链更易于和海藻糖接触. 所有氨基酸的主链与水分子接触的趋势一致. 虽然氨基酸和海藻糖与水之间均形成氢键,但氨基酸和海藻糖之间的氢键相互作用要弱于氨基酸和水之间的氢键相互作用. 上述分子模拟的结果对于海藻糖稳定蛋白质作用机理的解析及高效蛋白质稳定剂的理性设计具有非常重要的理论指导意义.  相似文献   

4.
糖和蛋白质的相互作用参与了很多重要的生命过程.研究糖和蛋白质的相互作用有多种手段,石英晶体微天平(QCM)是其中重要的一种.研究中常需要将蛋白质通过共价键连接在天平芯片的表面.但是,用于检测糖分子的蛋白质多为植物凝集素,它们的分子量大,表面可修饰位点少,通过共价键修饰在芯片表面的效率偏低.本文提出一种基于糖和苯硼酸之间动态共价键的新修饰方法,能够大幅度提高蛋白质在芯片表面的修饰效率.  相似文献   

5.
双偏振干涉(dual polarization interferometry,DPI)技术是近年来发展起来的一种免标记、实时、高灵敏和高分辨率的表面分析技术.它能够精确测量分子相互作用界面层的密度、厚度和质量的绝对值,可实时获取分子相互作用过程的动力学和结构信息.本文简单介绍了DPI的测量原理、仪器组成并对其与相关检测技术的对比进行了简要的概述;着重介绍了近10年来DPI技术在生物分子相互作用研究方面的应用进展,主要包括蛋白质之间以及与其他分子的相互作用,DNA与各种分子之间的相互作用,生物膜与其他分子的相互作用,蛋白质的吸脱附、聚集和结晶过程监测等;并对DPI技术未来的发展进行了展望.随着技术的不断发展,DPI将会在生物分析、纳米材料表征、能源相关表/界面研究等方面得到广泛应用.  相似文献   

6.
研究了二甲酚橙(XO)-Cu(Ⅱ)配合物与牛血清蛋白(BsA)相互作用的共振散射光谱(RLS)和电子吸收光谱,建立了一种利用金属配合物为探针测定痕量蛋白质的分析方法.在pH 2.50的Britton-Robinson缓冲溶液中,XO-Cu(Ⅱ)与BSA作用后在λ=557 nm处出现一增强的共振散射峰,且增强的RLS强度与蛋白质的浓度呈线性关系.在选定的优化条件下,线性范围为0.18~15μg/mL.线性方程为I(Rts)=46.5+64.8ρ(μg/mL),r=0.998,方法检出限为0.15μg/mL.该方法用于牛尿及牛血样品分析测定.对二甲酚橙-Cu(Ⅱ)配合物与蛋白质的相互作用的研究表明,二甲酚橙-Cu(Ⅱ)配合物与蛋白质之间主要存在的相互作用是静电引力.  相似文献   

7.
利用多糖与金属离子复合制备了一种高效的蛋白质吸附剂.海藻酸钠和羧甲基纤维素钠是两种富含羟基和羧基的多糖, 具有较强的金属亲和性.将其用钙离子交联后制备成金属-多糖复合材料, 进一步修饰铜离子, 得到蛋白质吸附剂.吸附剂对富含组氨酸的牛血红蛋白的吸附量可以达到33 g/g, 对少量组氨酸的牛血清白蛋白的吸附量也可以达到9.8 g/g.蛋白质吸附剂对人血血清进行两次吸附后, 可以去除其中98%的蛋白, 能够满足人血血清中核苷类物质的直接色谱进样检测.  相似文献   

8.
蛋白质-RNA之间的相互作用是蛋白质在细胞里面行使功能的重要方式之一. 结构生物学家利用实验手段可以得到蛋白质-RNA复合物的三维结构, 通过原子水平的晶体结构来解释蛋白质与RNA的识别过程. 但实验取得蛋白质-RNA的复合物结构非常困难, 耗钱、耗时, 同时受限于其相互作用强度. 因而利用理论的方法对蛋白质-RNA相互作用界面进行预测与设计在生物医学研究中十分重要. 本文主要综述了近期蛋白质-RNA相互作用界面预测与设计方面的进展, 包括以下几个方面: (1) 蛋白质-RNA分子对接算法以及对接前后存在的构象变化的处理; (2) 蛋白质-RNA 识别机制的研究; (3) 基于蛋白质-RNA 相互作用界面的分子设计. 蛋白质-RNA分子对接算法逐步完善将有助于我们对大量未知功能的蛋白质与RNA进行功能注释, 而基于生物大分子相互作用界面的分子设计将在药物设计领域中有广阔的应用前景.  相似文献   

9.
食品香味释放   总被引:1,自引:0,他引:1  
食品香味释放通常指的是香味成分在食品食用过程中的释放。香味释放受到化学相互作用、传质以及人为因素例如牙齿数目、咀嚼效率、咀嚼时间、呼吸过程等影响。任何一种香味成分与食品组分之间的相互作用都会限制香味刺激向感官受体的传递,从而影响香味感觉。本文对3种香味物与食品主要组分之间的相互作用,也即脂质/香味相互作用、碳水化合物/香味相互作用以及蛋白质/香味相互作用进行了介绍。  相似文献   

10.
表面等离子体共振(SPR)技术是20世纪90年代发展起来的一种新型技术,应用SPR原理可检测生物传感芯片上配位体与分析物之间的相互作用情况,在生命科学、医疗检测、药物筛选、食品检测及环境监测等领域具有广泛的应用需求.SPR技术可与免疫传感器结合,利用抗原抗体的特异性反应可用于各种蛋白质抗原的检测.本文重点总结了SPR免疫传感器在食品及医疗领域蛋白质检测的应用,综述了近年来SPR免疫传感技术在这该领域的研究热点及进展.  相似文献   

11.
The role of the non-gelling polysaccharide, propyleneglycol alginate (PGA), on the dynamics of gelation and gel properties of β-lactoglobulin (β-lg) under conditions where the protein alone does not gel (6%) was analyzed. To this end, the kinetics of gelation, aggregation and denaturation of β-lg in the mixed systems (pH 7) were studied at different temperatures (64–88 °C). The presence of PGA increased thermal stability of β-lg. The rate of β-lg denaturation was decreased and the onset and peak denaturation temperatures increased by 2.2–2.4 °C. PGA promoted the formation of larger aggregates that continued to grow in time. An average aggregate diameter of approximately 300 nm is reached at the gel point in the mixed β-lg+PGA systems, irrespective of the heating temperature. Comparing the activation energies for the aggregation (193 kJ/mol), denaturation (422 kJ/mol) and formation of the primary gel structure (1/tgel) (256 kJ/mol) processes in the mixed protein–polysaccharide system, it can be concluded that the rate determining step in the formation of the primary gel structure would be the aggregation of protein. Ea values for the processes after the gel point (solid phase gelation) suggest a diffusion limited process because of the high viscosity of the solid gelling matrix. The characteristics of the mixed β-lg+PGA gels in terms of rheological and textural parameters, water loss and microstructure were studied as a function of heating temperature and time. The extent of aggregation and the type of interactions involved, prior to denaturation seem to be very important in determining the gel structure and its properties.  相似文献   

12.
Monolithic capillary columns containing native silica gel were covalently modified with 3,5-disubstituted phenylcarbamate derivatives of cellulose and amylose and applied for enantioseparations in capillary LC. The method previously used for covalent immobilization of polysaccharide phenylcarbamate derivatives onto the surface of microparticulate silica gel was successfully adapted for in situ modification of monolithic fused-silica capillary columns. The effects of the nature of polysaccharide and the substituents, as well as of multiple covalent immobilization of polysaccharide derivative on chromatographic performance of capillary columns were studied. The capillary columns obtained using this technique are stable in all solvents commonly used in LC and exhibit promising enantiomer resolving ability.  相似文献   

13.
This work investigates surface properties of a protein particle gel and effects of polysaccharide on the surface microstructure of such a protein gel. Whey protein isolate (WPI) was used as the primary gelling agent, and a polysaccharide (xanthan) was investigated for its surface smoothing effects. The surface properties of heat-set WPI gels with and without the presence of xanthan (0, 0.05, and 0.25%) were characterized using a surface friction technique. The surface friction force of a gel against a stainless steel substrate was found to be highly dependent on the sliding speed for all three gel samples, and the addition of xanthan caused a general reduction of surface friction. The gel containing no xanthan has the largest surface friction and behaved in the most load-dependent manner, whereas the gel containing 0.25% xanthan has the lowest surface friction and showed the least load dependency. It was inferred that the WPI gel containing no xanthan has the roughest surface among the three samples and the presence of xanthan leads to a smoother surface with probably a thinner layer of surface water. Surface features derived from surface friction tests were confirmed by surface microstructure observation from confocal laser scanning microscopy (CLSM) and environmental electron scanning microscopy (ESEM). Surface profiles from CLSM images were used to quantify the surface roughness of these gels. The mean square root surface roughness R(q) was calculated to be 3.8 +/- 0.2, 3.0 +/- 0.2, and 1.5 +/- 0.2 microm for gels containing 0, 0.05, and 0.25% xanthan, respectively. The dual excitation images of protein and xanthan from CLSM observation and images from ESEM observation indicate a xanthan-rich layer at the surfaces of the xanthan-containing gel samples. We speculate that the creation of the outer surface of a particle gel is based on a different particle aggregation mechanism from that leading to network formation in the bulk.  相似文献   

14.
In this research, a simple, green and effective strategy was developed to produce long-term stable oil in water emulsion from soy protein and soy polysaccharide. Soy protein and soy polysaccharide formed dispersible complexes at pH around 3.25 aqueous solution through electrostatic and hydrophobic interactions. A high pressure homogenization produced the protein/polysaccharide complex emulsion having a droplet size about 250 nm. A heat treatment of the emulsion resulted in the protein denaturation, forming irreversible oil-water interfacial films composed of soy protein/soy polysaccharide complexes. The droplets of the emulsion were characterized by dynamic light scattering, ζ-potential, transmission electron microscopy, polysaccharide digestion via pectinase, and confocal laser scanning microscopy observation via dual fluorescence probes. As a result of the polysaccharide being fixed on the droplet surface, the emulsions exhibited long-term stability in the media containing pH values of 2-8 and 0.2 mol/L NaCl. The stable soy protein/soy polysaccharide complex emulsion is a suitable food-grade delivery system in which lipophilic bioactive compounds can be encapsulated.  相似文献   

15.
Enrichment of colloidal dairy systems with dietary fibre frequently causes quality defects because of phase separation. We investigate phase separation in skimmed milk enriched with Glucagel (a commercial product made from barley that is predominantly comprised of the polysaccharide β-glucan). The driving force for phase separation was depletion flocculation of casein micelles in the presence of molecules of the polysaccharide. Depending on the volume fraction of casein micelles and the concentration of Glucagel, the stable system phase separated either as a transient gel or as a sedimented system. The rate at which phase separation progressed also depended on the volume fraction of casein micelles and the concentration of Glucagel. To confirm the role of depletion flocculation in the phase separation process, enzymatic reduction in the molecular weight of β-glucan was shown to limit the range of attraction between micelles and allow the stable phase to exist at a higher β-glucan concentration for any given volume fraction of casein micelles. These phase diagrams will be useful to dairy product manufacturers striving to improve the nutrient profile of their products while avoiding product quality impairment.  相似文献   

16.
Abstract

This enhancement in the activity may be efficient on the basis that ligands mainly possess CH=N bond. The use of a structure-based drug design approach (SBDD) provides a way for investigation as well as to understand the molecular basis of the target protein and ligand molecule interactions at the atomic level. Structure-based drug design is the design and optimization of a chemical structure to identify a compound suitable for clinical testing the drug candidates. Chitosan is a polysaccharide with recognized biological activities for improving the functionality of polysaccharide 5-Fluorosalicylaldehyde aniline system. The used for selectively oxidized chitosan to produce tailored derivatives. C-2-5-Fluorosalicylaldehyde-C-6 aniline double Schiff base derivatives of chitosan were synthesized. The structure and properties of the newly synthesized product were characterized by FT-IR, 1H-NMR, 13C-NMR, GC-Mass spectroscopy, and thermal analysis (DSC/TGA). An exothermic process discusses a DSC and TGA analysis of thermal behavior of this polymer was shown to be a possible thermal polymerization of the double bonds in the polymer chains and thermo-oxidation of the polymer.  相似文献   

17.
The goal of this work was to design a new nanocarrier composed of the glycosaminoglycan hyaluronan and the polysaccharide chitosan, intended for the transmucosal delivery of macromolecules. The nanoparticles were characterized for their size and superficial charge. The incorporation of hyaluronan was verified by agarose gel electrophoresis and Fourier transform infrared (FT-IR) spectroscopy. The ability of the nanosystems to encapsulate macromolecules was studied taking the hydrophilic protein bovine serum albumin (BSA) and the hydrophobic polypeptide Cyclosporine A (CyA) as models. Results showed that the experimental conditions could be conveniently adjusted in order to modulate the physicochemical properties of the carriers and their composition. Moreover, the nanoparticles provided high association efficiencies of the selected macromolecules.  相似文献   

18.
Although the use of silica sol–gels for protein entrapment has been studied extensively our understanding of the interactions between the immobilization matrix and the entrapped biomolecules is still relatively poor. Non-invasive in situ spectroscopic characterization is a promising approach to gain a better understanding of the fundamentals governing sol–gel immobilization of biomolecules. This work describes the application of Fourier transform infrared (FTIR) microscopy to determine the influence of modifying the sol–gel hydrophobicity, by varying the content of the organically modified precursor propyltrimethoxysilane (PTMS), on the distribution and structure of three model proteins (lysozyme [EC 3.2.1.17], lipase [EC 3.1.1.3] and bovine serum albumin (BSA)) in silica sol–gel thin films. FTIR analysis of the overall immobilized protein positional distribution showed a Gaussian type distribution. FTIR microscopic mapping however, revealed that the spatial distribution of proteins was heterogeneous in the sol–gel thin films. When this positional information provided by FTIR microscopy was taken into account, areas of high protein concentration (clusters) were found and were not found to be homogeneously distributed. The shape of these clusters was found to depend on the type of protein entrapped, and in some cases on the composition of the sol–gel. Positional analysis of the distribution of the organically modified precursor PTMS in relation to the protein distribution was also conducted. The localized concentration of PTMS was found to positively correlate with the protein concentration in the case of lipase and negatively correlate in the case of lysozyme and BSA. These results indicate that lysozyme and BSA concentration was higher in areas of low hydrophobicity, while lipase concentration was higher in areas of high hydrophobicity within the sol–gel. Additionally, as determined by peak shape analysis of the amide I peak a higher PTMS content appeared to conserve protein structure in high concentration clusters for lipase. In contrast, lysozyme and BSA, appeared to retain their structure in high concentration clusters better at lower PTMS contents. A hypothesis speculating on the nature of the hydrophobic/hydrophilic interactions between the proteins and the sol–gel domains as the reason for these differences is presented.  相似文献   

19.
The protein–polysaccharide combinations that lead to electrostatic complex and coacervate formation are the object of extensive research using both layer-by-layer and mixed emulsion approaches. The protein–polysaccharide conjugates demonstrated interesting physicochemical properties as stabilizers and emulsifiers, as well as texture modifiers in food products. Furthermore, they are potential optimal nutrient delivery systems. Their complex behavior due to several factors such as pH, ionic strength, concentration, heat, and mechanical treatments is the main reason behind the continuous growth of the research field. The review is reporting some recent advances on the topic, along with an overview of the possible interactions between protein and polysaccharide, from Maillard reaction to enzymatic cross-linking passing through coacervates.  相似文献   

20.
The effect of gelation of the polysaccharide phase on the phase separation was investigated for mixtures of anionic polysaccharide (kappa-carrageenan) and globular protein (beta-lactoglobulin) clusters at pH 7 well above the iso-electric point. Gelation of kappa-carrageenan was induced by cooling in the presence of KCl. In the liquid state the protein clusters phase-separate into relatively dense micro-domains. When the polysaccharide phase gelled during cooling, the turbidity of the systems decreased dramatically. Light scattering experiments showed that the density of the micro-domains decreased, while microscopy showed that the number and size was not strongly modified. It is concluded that smaller protein clusters leave the micro-domains when kappa-carrageenan gels. The effect could be reversed by reheating the samples and thus melting the gel and was observed for repeated heating and cooling cycles. The effect of gelation on phase separation decreases with increasing polysaccharide concentration and with ageing of the liquid mixture. The latter is caused by the formation of bonds between the protein clusters in the micro-domains that slowly reinforce with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号