首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A system of two opposite Everhart–Thornley detectors A and B has formerly been applied in conventional SEM for electron energies between 5 and 20 keV to separate material, topographic and other types of contrast by sum and difference signals. This technique can also be used successfully for low-voltage scanning electron microscopy. The decreasing information depth with decreasing electron energy shows differences in the surface composition and contamination which cannot be observed beyond 5 keV. Also below 5 keV material and topographic contrast can be separated and increased by the A + B and A − B signals, respectively.  相似文献   

2.
A field-emission scanning electron microscope (FESEM) equipped with the standard secondary electron (SE) detector was used to image thin (70–90 nm) and thick (1–3 μm) sections of biological materials that were chemically fixed, dehydrated, and embedded in resin. The preparation procedures, as well as subsequent staining of the sections, were identical to those commonly used to prepare thin sections of biological material for observation with the transmission electron microscope (TEM). The results suggested that the heavy metals, namely, osmium, uranium, and lead, that were used for postfixation and staining of the tissue provided an adequate SE signal that enabled imaging of the cells and organelles present in the sections. The FESEM was also used to image sections of tissues that were selectively stained using cytochemical and immunocytochemical techniques. Furthermore, thick sections could also be imaged in the SE mode. Stereo pairs of thick sections were easily recorded and provided images that approached those normally associated with high-voltage TEM.  相似文献   

3.
Since semiconductor structures are becoming smaller and smaller, the examination methods must also take this development into account. Optical methods have long reached their limits here, but small dimensions are also a challenge for electron beam techniques, especially when it comes to determining optical properties. In this paper, electron microscopic methods of investigating optical properties are discussed. Special attention is given to the physical limits and how to deal with them. We will cover electron energy loss spectrometry as well as cathodoluminescence spectrometry. We pay special attention to inelastic delocalisation, radiation damage, the Čerenkov effect, interference effects of optical excitations and higher diffraction orders on a grating analyser for the cathodoluminescence signal.  相似文献   

4.
This study has investigated the potential of environmental electron microscopy techniques for studying the structure of polymer‐based electronic devices. Polymer blend systems composed of F8BT and PFB were examined. Excellent contrast, both topographical and compositional, can be achieved using both conventional environmental scanning electron microscopy (ESEM) and a transmission detector giving an environmental scanning transmission electron microscope (ESTEM) configuration. Controllable charging effects present in the ESEM were observed, giving rise to a novel voltage contrast. This shows the potential of such contrast to provide excellent images of phase structure and charge distributions.  相似文献   

5.
We report the effects of varying specimen thickness on the generation of transmission Kikuchi patterns in the scanning electron microscope. Diffraction patterns sufficient for automated indexing were observed from films spanning nearly three orders of magnitude in thickness in several materials, from 5 nm of hafnium dioxide to 3 μm of aluminum, corresponding to a mass‐thickness range of ~5 to 810 μg cm–2. The scattering events that are most likely to be detected in transmission are shown to be very near the exit surface of the films. The energies, spatial distribution and trajectories of the electrons that are transmitted through the film and are collected by the detector are predicted using Monte Carlo simulations.  相似文献   

6.
Mathews RG  Donald AM 《Scanning》2002,24(2):75-85
Environmental scanning electron microscopy (ESEM) is a technique capable of imaging volatile and/or insulating samples in their natural state, without prior specimen preparation. It is thus a powerful potential tool for the study of the structure and dynamics of emulsions and other complex liquid systems, at a resolution greater than that obtainable by conventional optical microscopy. We present images of a variety of liquid systems containing micron-scale and smaller features. The morphology of these systems may be clearly discerned. The contrast observed between the liquid phases was consistent with the model proposed by Stokes et al. (1998). The limits of resolution were determined by sample motion and by beam damage effects; under optimum conditions, resolution of a few tens of nanometers was obtained. This compares favourably with conventional and confocal optical microscopy. In some samples, thin films (solid or liquid) could be observed at the liquid/gas interface. Some of these films were so thin that they did not completely obscure the underlying structure of the bulk sample.  相似文献   

7.
Free-standing graphene sheets have been imaged by scanning transmission electron microscopy (STEM). We show that the discrete numbers of graphene layers enable an accurate calibration of STEM intensity to be performed over an extended thickness and with single atomic layer sensitivity. We have applied this calibration to carbon nanoparticles with complex structures. This leads to the direct and accurate measurement of the electron mean free path. Here, we demonstrate potentials using graphene sheets as a novel mass standard in STEM-based mass spectrometry.  相似文献   

8.
9.
Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.  相似文献   

10.
A new technique for preparing electron-transparent specimens of hard particle powders is described. It consists of mechanically embedding the powder into a thin foil of soft metal followed by ion-beam etching. This has numerous advantages over other methods of examining powders, such as their direct examination when supported by a carbon film, or by using epoxy resin as an embedding medium. The metal foil can be chosen to minimize overlap of the spectrographic peaks of the metal and the hard particles.  相似文献   

11.
We present an integrated light‐electron microscope in which an inverted high‐NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high‐resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub‐10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum‐compatible immersion oil. For a 40‐nm‐diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry.  相似文献   

12.
Vladár AE  Radi Z  Postek MT  Joy DC 《Scanning》2006,28(3):133-141
Experimental nanotips have shown significant improvement in the resolution performance of a cold field emission scanning electron microscope (SEM). Nanotip electron sources are very sharp electron emitter tips used as a replacement for the conventional tungsten field emission (FE) electron sources. Nanotips offer higher brightness and smaller electron source size. An electron microscope equipped with a nanotip electron gun can provide images with higher spatial resolution and with better signal-to-noise ratio. This could present a considerable advantage over the current SEM electron gun technology if the tips are sufficiently long-lasting and stable for practical use. In this study, an older field-emission critical dimension (CD) SEM was used as an experimental test platform. Substitution of tungsten nanotips for the regular cathodes required modification of the electron gun circuitry and preparation of nanotips that properly fit the electron gun assembly. In addition, this work contains the results of the modeling and theoretical calculation of the electron gun performance for regular and nanotips, the preparation of the SEM including the design and assembly of a measuring system for essential instrument parameters, design and modification of the electron gun control electronics, development of a procedure for tip exchange, and tests of regular emitter, sharp emitter and nanotips. Nanotip fabrication and characterization procedures were also developed. Using a "sharp" tip as an intermediate to the nanotip clearly demonstrated an improvement in the performance of the test SEM. This and the results of the theoretical assessment gave support for the installation of the nanotips as the next step and pointed to potentially even better performance. Images taken with experimental nanotips showed a minimum two-fold improvement in resolution performance than the specification of the test SEM. The stability of the nanotip electron gun was excellent; the tip stayed useful for high-resolution imaging for several hours during many days of tests. The tip lifetime was found to be several months in light use. This paper summarizes the current state of the work and points to future possibilities that will open when electron guns can be designed to take full advantage of the nanotip electron emitters.  相似文献   

13.
A simple method is described to determine the effective gas path length when incident electrons scatter in the gas above the specimen. This method is based on the measurement of a characteristic x-ray line emitted from a region close to the incident beam. From various experimental measurements performed on various microscopes, it is shown that the effective gas path length may increase with the chamber pressure and that it is also often dependent of the type of x-ray bullet.  相似文献   

14.
In the environmental scanning electron microscope, material joints of different atomic mass and different electrical conducting properties can easily be observed simultaneously without coating the specimen. For such heterogeneous materials, the quality of the image can be optimized with respect to contrast and resolution if the contrast types as well as their significance to the composition of the image are known.  相似文献   

15.
J. Hejna 《Scanning》1995,17(6):387-394
Two scintillation backscattered electron (BSE) detectors with a high voltage applied to scintillators were built and tested in a field emission scanning electron microscope (SEM) at low primary beam energies. One detector collects BSE emitted at low take-off angles, the second at high takeoff angles. The low take-off detector gives good topographic tilt contrast, stronger than in the case of the secondary electron (SE) detection and less sensitive to the presence of contamination layers on the surface. The high take-off detector is less sensitive to the topography and can be used for detection of material contrast, but the contrast becomes equivocal at the beam energy of 1 keV or lower.  相似文献   

16.
A consortium of microorganisms with the capacity to degrade crude oil has been characterized by means of confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The analysis using CLSM shows that Microcoleus chthonoplastes is the dominant organism in the consortium. This cyanobacterium forms long filaments that group together in bundles inside a mucopolysaccharide sheath. Scanning electron microscopy and transmission electron microscopy have allowed us to demonstrate that this cyanobacterium forms a consortium primarily with three morphotypes of the heterotrophic microorganisms found in the Microcoleus chthonoplastes sheath. The optimal growth of Microcoleus consortium was obtained in presence of light and crude oil, and under anaerobic conditions. When grown in agar plate, only one type of colony (green and filamentous) was observed.  相似文献   

17.
The ratio of inelastic-to-elastic total cross-sections has been measured in an energy-filtering electron microscope for different elements. Formulae for the transmission of elastically and inelastically scattered electrons in part I were used to calculate the optimum conditions for a Z-ratio contrast in the electron spectroscopic imaging mode. Structure-sensitive contrast can be observed for all non-carbon atoms in biological sections when filtering with an energy loss at ΔE ~ 250 eV below the carbon K edge. Model experiments with evaporated layers of different elements on a carbon film allow measurement of the contrast increase. Filtering with the carbon plasmon loss shows a lower phase contrast than with zero-loss filtering. This can be explained by calculating contrast transfer functions for inelastically scattered electrons.  相似文献   

18.
We study atomic-resolution annular electron energy-loss spectroscopy (AEELS) in scanning transmission electron microscopy (STEM) imaging with experiments and numerical simulations. In this technique the central part of the bright field disk is blocked by a beam stop, forming an annular entry aperture to the spectrometer. The EELS signal thus arises only from electrons scattered inelastically to angles defined by the aperture. It will be shown that this method is more robust than conventional EELS imaging to variations in specimen thickness and can also provide higher spatial resolution. This raises the possibility of lattice resolution imaging of lighter elements or ionization edges previously considered unsuitable for EELS imaging.  相似文献   

19.
Exit wave reconstruction of a focus series of Ge in [110] using the PAMMAL algorithm was performed on a conventional electron microscope. The simulated images using the reconstructed object wave match very well with those obtained experimentally. Amplitudes from the complex wave function were extracted by means of local Fourier transformation. Crystal thickness and tilt were determined locally by quantitative comparison of the reconstructed amplitudes with amplitudes from multislice calculations. Detailed analysis yields the quasicoherent imaging approach used in the PAMMAL algorithm to produce the largest error in the analysis. For the Ge crystal specimen parameters were quantified to spatial frequencies of 5 nm1. In the case of an object producing strong diffracted beams, the reconstruction may fail because the quasicoherent approximation will not describe correctly the nonlinear image formation.  相似文献   

20.
Nanoscale scanning transmission electron tomography   总被引:2,自引:0,他引:2  
Electron tomography enables the study of complex three‐dimensional objects with nanometre resolution. In materials science, scanning transmission electron microscopy provides images with minimal coherent diffraction effects and with high atomic number contrast that makes them ideal for electron tomographic reconstruction. In this study, we reviewed the topic of scanning transmission electron microscopy‐based tomography and illustrated the power of the technique with a number of examples with critical dimensions at the nanoscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号