首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the self-assembly of several surfactant-encapsulated clusters (SECs) on the basal plane of graphite consisting of the doughnut-shaped tungstophosphate anion [Na(H2O)P5W30O110] covered by a hydrophobic shell of surfactants. Well-ordered rodlike structures are observed using scanning force microscopy. No such ordering is observed if the surfactant methyltrioctadecylammonium is used for encapsulation, suggesting that the density of alkyl chains around the polyoxometalate cluster is an important factor in determining the order of SEC assemblies on graphite. Coadsorption of tetratetracontane (n-C44H90) and (DODA)14[Na(H2O)P5W30O110] results in single, isolated SECs on a buffer layer of tetratetracontane, as determined by scanning tunneling microscopy.  相似文献   

2.
In this paper, we constructed an ordered self-organized film possessing a well-defined layered structure by using a polymerizable surfactant-encapsulated polyoxometalloeuropate, (DMDA)9EuW10O36 (DMDA: dodecyl(11-methacryloyloxyundecyl)dimethylammonium bromide). The in situ polymerization of the film through UV irradiation was investigated by using 1H NMR and FTIR spectra, and X-ray diffraction. The results show that 68% of the monomers that connect to the complex in the film have been polymerized at the utmost. In contrast to the virgin layered structure of the casting film which possesses a layer spacing of 2.7 nm, the layer thickness increases to about 3.3 nm after the in situ polymerization. The lifetime and the quantum yield of the polyoxometalate in the casting film were found to increase due to the change of the layered structure after in situ polymerization. Thus, the present results provide an effective way to tune the photophysical properties of the film through alteration of the layered structure. In the meantime, the stability of the casting film in the alkaline solution was improved after in situ polymerization.  相似文献   

3.
In this paper, we present a novel strategy for fabricating polyoxometalate (POM)-based photochromic silica hybrid films. To combine metal nanoparticles (NPs) into the POMs embedded silica matrix, furthermore, we realized the controllable in situ synthesis of metal NPs in the film by utilizing the reduction property of POMs existing in the reduced state. Through electrostatic encapsulation with hydroxyl-terminated surfactants, the POMs with good redox property can be covalently grafted onto a silica matrix by means of a sol-gel approach, and stable silica sol-gel thin films containing surfactant-encapsulated POMs can be obtained. The functional hybrid film exhibits both the transparent and easily processible properties of silica matrix and the stable and reversible photochromism of POMs. In addition, well-dispersed POMs in a hydrophobic microenvironment within the hybrid film can be used as reductants for the in situ synthesis of metal NPs. More significantly, the size and location of NPs can be tuned by controlling the adsorption time of metal ions and mask blocking the surface. The hybrid film containing both POMs and metal NPs with patterned morphology can be obtained, which has potential applications in optical display, memory, catalysis, microelectronic devices and antibacterial materials.  相似文献   

4.
5.
A series of surfactant-encapsulated polyoxometalates which have different compositions, shapes, and sizes, are able to self-assemble to the highly ordered honeycomb-structured macroporous films at the air/water interface without any extra moist airflow across the solution surface. The honeycomb film pores in the average diameter of 2-3 μm are obtained, which are independent of the polyoxometalates. It is speculated that the cooled micrometer water droplets act as the necessary templates for the formation of macropores, and the stability of these water droplets is crucial during the self-assembly. With increasing the concentration of surfactants, various morphologies from lowly ordered honeycomb films to highly ordered honeycomb films and then to disordered fragments can be modulated. The interfacial tension between chloroform solution and water droplets induces the changes of films. High-resolution TEM observations indicate a close-packed lamellar structure in the ordered honeycomb film walls. The self-assembly successfully performs the transfer of functional polyoxometalates from bulk solutions to interfacial films. Consequently, the produced honeycomb films present electronic activities, such as ferromagnetism and electrochemical properties. These detailed researches will enrich the studies based on materials obtained by encapsulations in cationic surfactants to construct newly nanostructures of polyoxometalates at interfaces, and promote the potential applications of the honeycomb films of surfactant-encapsulated polyoxometalates in advanced materials.  相似文献   

6.
Argon gas at a high pressure (~80 bar) has been expanded using a miniaturized pulsed valve at room temperature, producing a supersonic beam of cold, large argon droplets. Atoms of silver are subsequently embedded into the droplet using the pick-up technique. The resulting Ag(n)Ar(droplet) distribution was analyzed using multiphoton laser ionization time-of-flight mass spectrometry. Besides bare metal clusters, snowballs of silver monomers and dimers encapsulated in up to 50 argon atoms have been observed. The influence of the solvent on the optical absorption of the solute was studied for embedded Ag(8) using resonant two-photon ionization in the ultraviolet. A redshift and broadening of the Ag(8)Ar(droplet) optical spectrum compared to that measured in pure [Federmann et al., Eur. Phys. J. D 1999, 9, 11] and Ar-doped helium droplets [Diederich et al., J. Chem. Phys.2002, 116, 3263] was observed, which is attributed to the interaction with the larger Ar matrix environment.  相似文献   

7.
A soft lithographic method is described for casting functional thermoplastic devices with microscale features without the need for specialized tools or equipment. In the thermoplastic soft lithography process, termed solvent casting, low temperature supersaturated solutions of thermoplastic are poured over solvent permeable PDMS molds which allow omnidirectional solvent removal as they template functional microstructures into the thermoplastic layers. Rapid gelation of supersaturated solutions enables the deposition of multiple patterned layers of varying composition, with self‐adhesion of the solvent‐laden thermoplastic ensuring intimate bonding between adjacent layers. This latter feature is further used in this work to realize sealed thermoplastic microfluidic devices with high fidelity replication of microchannel features with negligible channel deformation. The incorporation of functional dopants into patterned thermoplastic layers allows the fabrication of thermoplastic devices with embedded fluorescent sensors and integrated conductive elements. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1315–1323  相似文献   

8.
9.
According to zinc blende and wurtzite structures of ZnS nanocrystals, four clusters (Zn3S3, Zn4S4, (Zn3S3)2, and (Zn3S3)3), were investigated at B3LYP/Lanl2dz theoretical level. In simultaneous consideration of the influence of solvent and ligands, we calculated their Raman and absorption peaks, which are agreement with experimentally reported results. The calculated Raman spectra of Zn3S3, Zn4S4, (Zn3S3)2, and (Zn3S3)3 are in the range of 260–310 cm−1. During the calculation of absorption spectra, time-dependent density-functional theory (TDDFT) is employed. We have found an obvious blue-shift in the calculated wavelengths of the absorption peaks after consideration of the solvent. In solvent environment, the wavelength of absorption peak shifts to red with the increase of the atomic numbers from Zn3S3, to (Zn3S3)2 and (Zn3S3)3 clusters, which is induced by the quantum size effect. Since the sizes of the current calculated clusters are much smaller than the experimentally reported nano-sized ZnS nanocrystals, the calculated wavelengths of absorption peak of the four clusters are shorter than the nano-sized ZnS nanocrystals. Through the analysis of S–Zn–ligand structures, we speculate that the main influence of ligands comes from thiol of ligand because all S–Zn–ligand structures have similar Wiberg Bond Index (WBI) values, absorption spectra, and bond length in theory.  相似文献   

10.
Based on the experimental zinc blende and wurtzite structures of CdS nanocrystals, five new CdS clusters (Cd3S3, (Cd3S3)2, (Cd3S3)3, Cd4S4 with C2V, and Cd4S4 with TD symmetry) are investigated via optimization of their original structures at B3LYP/Lanl2dz theoretical level. Through considering integration influence of solvent and ligand, our calculated Raman and absorption spectra can be consistent with the reported experimental results. First, our calculated Raman peaks of Cd3S3, Cd4S4 (TD), (Cd3S3)2, and (Cd3S3)3 are within the range of 260–290 cm?1, which is also reported by experiment. Subsequently, for deep researching five clusters, the absorption spectra of them are calculated using time‐dependent DFT method. The wavelengths of the absorption peaks, which is calculated in solvent, increase in the order Cd3S3, Cd4S4 (TD), (Cd3S3)2, and (Cd3S3)3. Moreover, the wavelengths of absorption peaks shift to blue in solvent, compared with those without solvent. Furthermore, our clusters are smaller than the size of the smallest CdS nanocrystals, the calculated absorption spectra of five clusters in solvent show obvious blue shift than the wavelengths of absorption spectra of reported CdS nanocrystals. This is induced by the quantum size effect. Besides, we further investigated the influence of ligands to CdS unit in aqueous condition. Through structures and characters analysis of S? Cd? SR, we discovered that ligands took important role during the formation of CdS nanocrystals in aqueous synthesis. Calculated results of spectra, bond length, and Wiberg bond index (WBI) values show that different ligands have similar influence on CdS unit. Moreover, using WBI values, we also confirm that Cd atom has stronger interaction with S in nanocrystals than that with S atom in ligand. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
The swelling behavior of acid form poly(styrene sulfonate) (PSS‐H) thin films were investigated using in situ spectroscopic ellipsometry (SE) to probe the polymer–solvent interactions of ion‐containing polymers under interfacial confinement. The interaction parameter (χ), related to the polymer and solvent solubility parameters in the Flory–Huggins theory, describes the polymer‐solvent compatibility. In situ SE was used to measure the degree of polymer swelling in various solvent vapor environments, to determine χ for the solvent‐PSS‐H system. The calculated solubility parameter of 40–44 MPa1/2 for PSS‐H was determined through measured χ values in water, methanol, and formamide environments at a solvent vapor activity of 0.95. Flory–Huggins theory was applied to describe the thickness‐dependent swelling of PSS‐H and to quantify the water‐PSS‐H interactions. Confinement had a significant influence on polymer swelling at low water vapor activities expressed as an increased χ between the water and polymer with decreasing film thickness. As the volume fraction of water approached ~0.3, the measured χ value was ~0.65, indicating the water interacted with the polymer in a similar manner, regardless of thicknesses. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1365–1372  相似文献   

12.
Sun H  Li H  Bu W  Xu M  Wu L 《The journal of physical chemistry. B》2006,110(49):24847-24854
Self-organized microporous structures based on a series of surfactant-encapsulated polyoxometalate complexes (SECs) have been prepared by using ordered condensed droplets as a template. Among these structures, ordered honeycomb structures were obtained and characterized in detail by taking (DODA)(12)H[Eu(SiW(11)O(39))2] (SEC-1) as an example. Optical microscope, atomic force microscopic, and scanning electron microscopic measurements confirmed the formation of three-dimensional microporous structure, in which the top surface shows a highly ordered honeycomb structure. As compared to common solvent-casting films, the corresponding honeycomb films are more hydrophobic and possess more ordered lamellar structures. Both the wettability and the size of SECs exert significant influence on the formation of microporous structures. The proper hydrophobicity of SECs was proposed to be an essential factor for the formation of honeycomb films, and large-sized SECs are favorable for the fabrication of highly ordered honeycomb structures. The conditions for the formation of different surface morphologies have been discussed in terms of the contact angle of SECs at the interface between water and chloroform, and a contact angle slightly greater than 90 degrees is found to be a prerequisite for the formation of honeycomb structures. The results reported in this paper not only help to further comprehend the mechanism of the formation of honeycomb structures, but also provide some guidance for the design of ordered microporous films based on organic/inorganic hybrid materials, exemplified by the organic/nanoparticle complexes.  相似文献   

13.
Li W  Yi S  Wu Y  Wu L 《The journal of physical chemistry. B》2006,110(34):16961-16966
We investigate in detail novel organic-inorganic hybrid liquid crystalline materials, the complexes of surfactant-encapsulated polyoxometalate clusters (SECs), using thermal, X-ray diffraction, and FT-IR spectroscopic analyses. The differential scanning calorimetry measurements reveal four phase transitions under heating processes. We employ FT-IR spectroscopy to understand these phase behaviors. On the basis of vibration spectral assignments, the evidence suggests that the first two phase transitions are associated with the increase of gauche conformers and the disruption of alkyl chains packing in the heating run; the third phase transition is due to the full conformational disorder of alkyl chains covered on the polyoxometalates (PMs); no significant C-H stretching or wagging vibrations are observed with the fourth transition. We find that the fourth endothermic peak is sensitive to the charges of the PMs, and the transition temperature decreases from 185, 177, to 164 degrees C with decreasing PM charges from 13, 11, to 9, respectively. Interestingly, the temperatures of the first three phase transitions of SECs are essentially independent of the PM charges.  相似文献   

14.
15.
Keggin-type heteropolyanions, H(3)PW(12)O(40) (HPW), Na(3)PW(12)O(40) (NaPW), H(4)SiW(12)O(40) (HSiW) and K(4)SiW(12)O(40) (KSiW), were encapsulated by a cationic surfactant, di[12-(4'-octyloxy-4-azophenyl)dodecyloxy]dimethylam monium bromide (L), through the replacement of counterions. The resulting surfactant-encapsulated polyoxometalate complexes were characterized by UV-vis, Raman, and NMR spectra in detail. The measurement results indicated that some azobenzene groups of the surfactant were protonated in the complexes HL/HPW (HL is the abbreviation of the protonated surfactant), HL/NaPW, and HL/HSiW during the process of encapsulation, whereas the protonation was not observed in L/KSiW. The thermotropic liquid crystal properties of these complexes were investigated by differential scanning calorimetry, polarized optical microscopy and variable-temperature X-ray diffraction. Interestingly, different smectic mesophases were observed between the protonated HL/HSiW and the non-protonated L/KSiW, which suggests that the protonation of azobenzene groups in HL/HSiW plays a key role in the liquid crystalline organization. However, protonated HL/HPW and HL/NaPW exhibit a similar smectic B phase to that of the de-protonated one, L/HPW. A competitive balance between the phase separation and the volume minimization of surfactants was proposed to explain the self-organized liquid crystal structures of these protonated and non-protonated complexes. To the best of our knowledge, the present investigation provides a specific example for protonated hybrid materials with stable liquid crystal properties.  相似文献   

16.
In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 ± 5)%, (55 ± 5)% or (75 ± 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 ± 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.  相似文献   

17.
We have fabricated a novel organic/inorganic hybrid material consisting of multifunctional surfactant-encapsulated polyoxometalloeuropate which functions as a luminescent logic gate with dual output operated by light and metal ion as inputs.  相似文献   

18.
In this study, we report on the electrosyntheses of polyaniline (PAni) and PAni/magnetite nanoparticle (PAni/Fe3O4-NP) composite films by a potentiodynamic method from water and ethanol solutions. The aim of the study is to evaluate the effect of the solvent on the electrochemical growth of these films. The growth cyclic voltammograms and the mass change variation (Δm), determined by the electrochemical quartz crystal microbalance technique, show that the polymer growth rate is lower in ethanol than in water (Δm in water is ca. 50% higher than in ethanol after 30 voltammetric cycles). As a consequence, the films grown from ethanol show a more compact and uniform morphology, as we observed with scanning electron microscopy. Furthermore, the formation of oxidation products is inhibited in ethanol. The PAni/Fe3O4-NP composite films electrosynthesized in ethanol showed enhanced electrochemical response than the composite films grown from water. This is attributed to the better dispersion of the nanoparticles in this solvent and consequently in the polymer matrix, as confirmed by the Δm value and the spectroscopic characterization. We conclude that electropolymerization from ethanol solution provides high-quality PAni and PAni/Fe3O4-NP composite films; the electrochemical and morphological properties of these films suggest that their use for corrosion protection is promising.  相似文献   

19.
The diffusion of NMP (n-methyl-pyrrolidinone) solvent in a semirigid rod-like PMDA-ODA (pyromellitic dianhydride-4,4′-oxydianiline) film coated on silicon is found to be case I diffusion at temperatures ranging from 30 to 90°C by the use of a bending beam technique. The diffusion constant increases for the 7.4 μm PMDA-ODA film (which was cured at 300°C) from 3.3 to 318 × 10?11 cm2/s as the diffusion temperature increases from 30 to 90°C. The corresponding hygroscopic stress in the direction parallel to the film decreases with the increase of temperature, possibly due to the softening of the film at elevated temperatures. The diffusion mechanism, however, changes from case II to case I in a rigid rod-like PMDA-PDA (pyromellitic dianhydride-p-phenylenediamine) film when the diffusion temperature increases. The change in the diffusion mechanism occurs at a higher temperature for thinner films, presumably due to higher ordering and/or orientation in the films. The activation energy for NMP diffusion in the PMDA-ODA films markedly decreases from 93 to 59 kJ/mole as the film thickness increases from 2.2 μm to 11.3 μm. This may also be attributed to decreased ordering in thicker films. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
A series of surfactant-encapsulated and organically grafted polyoxometalates (SEOPs) were prepared through a co-precipitation procedure. Through a rational selection of the molecular components in the structure of the complex, SEOP complexes self-assemble into ordered aggregates with two different hierarchical self-assembled structures in an organic solvent mixture of dichloromethane and methanol in different volume ratios. FTIR, (1)H NMR, and X-ray photoelectron spectroscopy were used to characterize the self-assembly process and the involved driving forces. In a weakly polar solvent, SEOPs aggregated into fibers with a lamellar structure. When the solvent polarity was increased, SEOPs formed ribbonlike aggregates with a tetragonal structure. The change of the hierarchical self-assembled structure was deduced in regard to the arrangement of alkyl chains, electrostatic interactions, and hydrogen bonding between the pyridyl groups and terminal oxygen atoms of the polyoxometalates. The ribbonlike aggregates exhibit birefringence due to the ordered arrangement of SEOPs in the microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号