首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
降雨和库水位上升是滑坡失稳的重要因素之一,为探究滑坡变形过程和失稳条件,选取千将坪滑坡为实体对象,制作相似比为1:190的物理模型,在降雨和库水位耦合作用下,通过不同模型倾角角度并辅以监测手段进行试验研究。试验结果表明:滑面倾角越大,在同样诱发因素下越容易失稳;在降雨和库水位耦合作用下,位移基本存在于滑坡前缘,滑坡后缘波动较弱,表现出牵引式滑坡特征;滑坡土压力与位移变化存在一定的对应关系,土压力随着滑坡的缓慢变形逐渐增加,滑坡破坏前瞬间土压力急剧增大达到峰值,破坏失稳时土压力急剧减小,呈现出应力重分布现象。  相似文献   

2.
库区水位周期性涨落将改变两岸土体地质条件,在联合降雨组合作用下,容易诱发滑体变形,极大程度地影响了滑坡的稳定性。以三峡库区卢家沱滑坡为例,针对滑体剖面二维模型,采用Geo-Studio软件模拟了不同库水位与降雨组合的滑坡稳定性分布情况;同时根据有限元软件Abaqus建立三维模型进行流固耦合作用分析。结果表明:在水库水位下降及降雨条件联合作用下,遭遇最不利工况时,滑坡将加剧变形,整体位移加大,存在局部失稳的可能,但由于滑坡前缘土体为中-强透水,利于地下水渗出,滑坡整体位移变化较小,未观察到塑性贯通区,可以确定卢家沱滑坡在不同工况条件下仍处于基本稳定状态。  相似文献   

3.
降雨裂缝渗透影响下山体边坡失稳灾变分析   总被引:1,自引:0,他引:1  
运用现代非线性分析中的突变论方法,研究了在降雨裂缝渗透影响下山体边坡可能发生突发性失稳滑坡和渐进演化性失稳滑坡的机理.针对在降雨裂缝渗透影响下由于软弱夹层介质的有效刚度侵蚀损伤导致的弱化效应,给出了山体边坡失稳滑坡的尖点突变理论模型.分析表明,降雨量、裂缝等外部环境因素的变化,以及滑坡面上软弱夹层介质的弹性区段与应变弱化区段的本构曲线拐点处的有效刚度比的变化会导致边坡失稳灾变;当由于边坡自身的上述非线性因素变化造成的影响达到一定程度时,在边坡稳定性演化过程中会出现明显的突变现象,这种突变的非线性现象出现的条件分别是边坡发生灾变性滑坡的突发因素和积累演化因素的表像.研究结果有助于认识边坡突发性滑坡灾变机理和灾变累积性演化机理,并进一步预测和防治山体滑坡.  相似文献   

4.
水库蓄水及水位骤降可能诱发古滑坡复活或部分复活,乃至产生新的滑坡是多数新建大型水利枢纽工程必须面临的工程地质问题.基于水位变动对库岸古滑坡作用机理分析,以某大型库岸古滑坡为研究对象,通过数值模拟探讨水位变动对库岸古滑坡变形及整体稳定性的影响,结果表明:库岸古滑坡对水位变化敏感,随库水位上升向库区方向变形逐渐增大,坡脚和滑动带塑性区不断发展;当水位骤降时将导致局部失稳,并有可能引发渐进性破坏.研究成果对同类工程的边坡治理及边坡预警具有指导意义.  相似文献   

5.
FLAC3D在库岸斜坡稳定性分析中的应用   总被引:2,自引:0,他引:2  
水库库岸滑坡是水利水电工程中常出现的重大工程地质问题之一,库岸滑坡集普遍性、危害性和特殊性于一体,深入研究其诱发机理及变形破坏特征,对评价滑坡的稳定性以及制定经济有效处理措施具有重大意义.本文针对库岸边坡在库水位陡降时易发生失稳破坏的特点,分析了库水诱发滑坡的破坏机制,并运用数值模拟方法对某库岸边坡工程进行分析,验证了所得结论:边坡岩土体因饱水软化作用,其滑动面的力学参数数值降低;库水的浮托力在某种程度上又有利于边坡的稳定;而当库水位陡变时,坡体内产生的渗透力又容易导致边坡失稳.  相似文献   

6.
三峡水库蓄水后,库水位消落对库岸滑坡稳定性具有重要影响。在详细调查三峡库区奉节县龙潭滑坡工程地质条件的基础上,分析了滑坡的发育特征、变形破坏机制、诱发因素及形成机理,根据三峡库水位调控方案,运用Geo-studio软件模拟库水位从175m降至145m的滑坡渗流场,评价了不同库水位下降速率工况(0.6~1.2m/d)的滑坡渗流场特征及其稳定性。研究表明:该滑坡处于稳定状态,稳定性系数随库水位下降速率的增大而减小;浸润线的下降速率慢于库水位下降速率,存在明显滞后性。研究成果对预报三峡水库库岸滑坡灾害具有一定的参考价值。  相似文献   

7.
水库库岸滑坡是水利水电工程中常出现的重大工程地质问题之一,库岸滑坡集普遍性、危害性和特殊性于一体,深入研究其诱发机理及变形破坏特征,对评价滑坡的稳定性以及制定经济有效处理措施具有重大意义.本文针对库岸边坡在库水位陡降时易发生失稳破坏的特点,分析了库水诱发滑坡的破坏机制,并运用数值模拟方法对某库岸边坡工程进行分析,验证了所得结论;边坡岩土体因饱水软化作用,其滑动面的力学参数数值降低;库水的浮托力在某种程度上又有利于边坡的稳定;而当库水位陡变时,坡体内产生的渗透力又容易导致边坡失稳.  相似文献   

8.
《焦作工学院学报》2016,(6):876-880
以九甸峡库区坎前古滑坡为例,研究水库蓄水初期对古滑坡稳定性的影响。采用GPS对该边坡进行高精度、连续性的位移监测,结合滑坡具体的工程地质条件,对其变形特征进行分析,并且采用Geo-slope计算不同蓄水速率条件下的库岸边坡的安全系数。结果表明,蓄水初期库岸边坡整体较为稳定,蓄水速率越大对其稳定性越不利,库水上升速率超过0.5 m/d时将会发生局部失稳;滑体中部变形较大,变形速率具有逐渐变小的趋势;变形破坏模式为中后部分块、分级推移前缘的蠕变破坏特征。蓄水初期古滑坡整体较为稳定,库水位快速上升时将会出现局部失稳;采用Geo-slope分析滑坡稳定性变化规律,与采用GPS监测数据分析的规律相符,验证了监测数据的可靠性。  相似文献   

9.
滑坡堆积体降雨入渗过程物理模拟试验研究   总被引:1,自引:0,他引:1  
降雨强度对滑坡坡面降雨入渗过程有显著影响,进而对滑坡变形稳定起着重要作用,孔隙水压力变化是降雨入渗诱发滑坡失稳的重要因素。为进一步探明降雨入渗过程与堆积体滑坡变形失稳破坏模式之间的内在关系,基于人工模拟降雨室内大型滑坡模型试验,研究了不同降雨强度下滑坡堆积体孔隙水压力变化与土压力的响应规律与变形破坏模式,揭示了降雨诱发滑坡变形破坏机理。结果表明:降雨入渗引起滑坡堆积体内孔隙水压力和土压力增加,且随着降雨强度的增大,滑坡体内孔隙水压力和土压力增长速率随之增大。堆积体滑坡变形破坏与孔隙水压力变化密切相关,滑坡堆积体内孔隙水压力随降雨历时的增加不断变大,进而基质吸力不断减小;滑坡体破坏区上侧会产生拉裂缝,下侧由于挤压作用出现土体隆胀,坡脚处会出现局部流土等现象。降雨强度大小与堆积体滑坡变形破坏模式密切相关,雨强大小为0.44 mm/min时,形成多级后退式滑坡变形破坏;雨强为0.57 mm/min时,滑坡体沿最危险剪切面发生大范围滑动破坏,并最终形成塑性流动。  相似文献   

10.
滑坡涌浪是一种常见的地质灾害现象,由于滑坡体与水体之间存在复杂的流固耦合作用,使得传统的单一介质模型无法进行准确求解。为此,介绍一种基于计算流体力学方法(CFD)与离散单元法(DEM)的流固耦合模型CFD–DEM,采用计算流体力学方法(CFD)求解水体流动,采用离散单元法(DEM)模拟散粒体滑坡运动,充分利用不同计算模型的优势,对滑坡及涌浪演进过程进行数值模拟分析。首先,利用该耦合模型对Robbe–Saule开展的颗粒堆积体坍塌–涌浪试验进行了相同工况下的数值计算,从颗粒坍塌运动过程、涌浪高度演化过程等方面进行对比,结果表明模拟结果与试验结果吻合很好,验证了CFD–DEM流固耦合模型的有效性。然后,将该方法应用于四川省猴子岩水库色玉滑坡–涌浪灾害的演进过程分析,重现了该事件滑坡失稳运动、涌浪产生及传播、涌浪爬升、涌浪回流的全过程,计算结果显示:计算得到的电站进水口处涌浪高度与实测数据较为接近;色玉滑坡从失稳运动至静止堆积的持续时间约为20 s,颗粒平均速度最大达到16.12 m/s;滑坡引起的涌浪约在滑坡失稳10 s后传播到对岸,之后开始沿坡面向上爬升,最大爬升高度达到27.32 m。研究表明CFD–DEM流固耦合模型能够很好地应用于模拟山区河谷大规模滑坡涌浪灾害,可为库区防灾减灾提供高效的技术支持。  相似文献   

11.
金沙江结合带结构破碎,软弱岩层发育,流域性特大高位地质灾害频繁发生。针对该区域开展大范围滑坡调查与监测研究,对减灾防灾具有重要意义。以金沙江结合带巴塘段为试验区,采用堆叠InSAR技术分别利用升轨、降轨Sentinel-1A卫星数据对该区域滑坡隐患开展了调查研究。在此基础上,以中心绒乡滑坡群为重点研究区,利用多维小基线子集技术获取了区域二维形变速率(水平东西向和垂直向)及二维时间序列结果。通过对4处典型滑坡体的形变时间序列结果进行分析,发现在两年时间段内安里克米滑坡、仁娘村滑坡、贡伙村滑坡1和贡伙村滑坡2水平方向累积位移量分别达到44.3、-26.6、65.3和-77.1 mm,垂直向累积位移量分别达到-30.2、-88.3、-80.9和-56.9 mm,且这4处滑坡呈现缓慢蠕滑变形趋势。通过对贡伙村滑坡2的形变监测二维时间序列与降雨数据分析发现,强降雨对滑坡变形有一定短暂影响。由于滑坡群处于地质条件脆弱地区,构造活动强烈,在强降雨条件下极易导致滑坡失稳,建议对其进行持续监测,同时该研究成果对流域内其他区域的滑坡调查与监测研究具有参考意义。  相似文献   

12.
我国西南山区大型水电工程大量建设于金沙江、澜沧江、雅砻江流域,但是这些流域复杂的地层、岩性、构造、水文等地质条件导致水电工程库岸滑坡灾害分布广泛,多发频发。合成孔径雷达干涉测量(InSAR)技术凭借其覆盖范围广、监测精度高、不受云雾遮挡等特点为水电工程库岸滑坡早期识别与监测带来了新的机遇,在近年来得到水电工程建设及库岸地质灾害防治相关领域的极大重视。基于此,对西南山区大型水电工程库岸滑坡InSAR早期识别与监测的应用概况进行了梳理,从研究时间、研究内容、研究对象等多角度进行了分析; 对水电工程库岸滑坡InSAR早期识别与监测技术的研究现状、研究热点进行了归纳与总结,揭示了以白鹤滩水电站为里程碑,水电工程库岸滑坡早期识别与监测目前已开始进入InSAR技术应用与研究的爆发阶段; 最后,探讨了水电工程全生命周期(蓄水前阶段、蓄水阶段、蓄水后阶段)对InSAR技术的不同应用需求与算法适用性。随着SAR数据质量提升与算法进步,InSAR技术必将常规化地参与到水电工程全生命周期库岸滑坡的识别与监测工作中,为水电工程库岸滑坡的早期识别、监测预警、触发机理研究及灾害防治等提供重要支撑,提升我国水电工程库岸滑坡地质灾害防治能力。  相似文献   

13.
滑坡是一种常见的地质灾害,通常在复杂的地质条件下演化和发生,给社会和人类的生命财产安全造成了极大的危害.了解滑坡的发展规律,对灾害防治具有重要意义.在现有滑坡累积位移时间序列的基础上,提出了一种基于遗传模拟退火算法的滑坡位移预测方法.采用遗传模拟退火算法-BP神经网络对白水河滑坡预警区Z118观测点进行分析,利用前3个...  相似文献   

14.
时间序列分析与支持向量机的滑坡位移预测   总被引:1,自引:0,他引:1  
滑坡在变形演化过程中,遭受季节性外界影响因素的作用,变形位移时间曲线呈现出阶跃型特征.采用时间序列分析方法,将位移分解为趋势项和季节项.趋势项位移由坡体自身地质条件控制,利用多项式函数进行预测|季节项位移受降雨、库水位和地下水位等因素的季节性作用而变化.选取当月降雨量、累计前2个月降雨量、当月库水位高程、月库水位变化速率和当月地下水位高程作为影响因子,利用进化支持向量机耦合模型进行预测|通过时间序列加法模型得到滑坡总位移预测值.以三峡库区白家包滑坡为例,通过计算得到预测结果与实际监测值基本吻合,其中最大均方根误差为188,而最小相关系数为098.研究表明:基于时间序列分析与进化支持向量机的滑坡位移预测模型,有效反映了阶跃型滑坡位移变化规律与季节性影响因素之间的响应关系,是一种行之有效的滑坡位移预测方法.  相似文献   

15.
黄河上游龙羊峡水库的建设改变了两岸的水文地质条件,库区水位周期性升降引起的渗透和侵蚀导致库岸坍塌和滑坡局部变形,非常有必要开展不稳定边坡的识别与监测,为库区坡体失稳因素研究以及预警预报提供技术支撑。采用2015年1月至2021年8月升降轨Sentinel-1A SAR影像,基于相干点目标分析(IPTA)方法对龙羊峡库区边坡进行识别,共识别出15处不稳定边坡。其中,查纳滑坡历史上多次发生塌滑现象,现今仍处于活跃状态,对库区人民生命财产与大坝工程安全造成潜在威胁,为此对查纳滑坡开展重点监测。首先,采用DS-InSAR技术获取该滑坡升降轨雷达视线向(LOS)形变; 然后,结合升降轨形变结果进行二维时序形变分解; 最后,采用小波分析定量分析了地表时序形变反演结果与降雨量、库区水位变化的相关性。结果表明:DS-InSAR技术获取的形变场比相干点目标分析方法更加完整; 查纳滑坡东部坡体位移大于中部与西部坡体位移,且垂直向位移大于东西向位移; 查纳滑坡位移时间序列与降雨量序列相关性不高,降雨可能不会显著促进滑坡的位移; 滑坡位移与库区水位均具有很强的年度周期变化,并且滑坡位移时间序列滞后库区水位序列约半年。  相似文献   

16.
降雨及库水位涨落是引起库岸滑坡形变失稳的主要诱发因素,但滑坡位移速率对此类诱发因素的响应具有一定的滞后性,影响人类对滑坡所处运动状态的判断与预测。针对常规预测模型中未考虑时滞效应的问题,利用三峡库区新铺滑坡的GNSS位移监测数据、奉节气象站降雨数据以及三峡库区库水位涨落数据,通过对监测区内9个GNSS监测点的位移速率序列与降雨量、库水位高程序列进行时滞互相关分析,确定时滞参数,进而应用多变量灰色系统理论方法,建立了时滞GM(1,3)预测模型,并对滑坡位移速率进行预测验证。结果表明:三峡库区新铺滑坡位移速率与降雨量显著相关,对降雨量的响应滞后时间约为5 d,滑体中后部受降雨影响比前缘更明显; 位移速率与库水位高程高度相关,对三峡库区库水位涨落的响应滞后时间约为31 d,滑坡前缘受库水位涨落影响更明显,且离长江越近,滞后时间越短; 利用加入时滞参数的时滞GM(1,3)模型进行预测,模型拟合优度达到0.702,相比GM(1,1)模型和未顾及时滞因素的GM(1,3)模型,预测精度分别提升了53.8%和58.3%,平均绝对误差百分比分别降低了7.19%和7.47%,在滑坡位移速率预测及库岸滑坡防灾减灾领域具有一定的工程应用价值。  相似文献   

17.
青藏高原其独特的地质背景和复杂的地理环境,滑坡灾害极为发育。由于构造活动强烈、河谷深切、斜坡高陡,内外动力耦合作用下诱发的高位崩滑往往具有极高的位能和超远的位移,对其危害范围内的构筑物和人类活动等造成严重破坏。因此,青藏高原重大滑坡灾害防治应从源头区—运动区—堆积区进行全过程调控和综合治理,因势利导地进行总体设计。本文对重大滑坡灾害源区、运动区的处置措施、减灾机理及其应用范围进行了探讨,根据青藏高原滑坡特点,研发了适应高海拔地区的变管径高扬程虹吸排水技术,抵抗滑体大变形的新型抗滑桩结构、以及抗冲击耗能减震棚洞结构。室内虹吸排水试验和混凝土梁试样的四点弯试验结果表明:1)对于不同扬程的试验,4 mm + 6.5 mm的虹吸系统排水能力均强于4 mm的,变管径使得排水能力提升比例为64%~117%;2)随着扬程的升高,6.5 mm虹吸排水系统排水能力下降明显比4 mm + 6.5 mm快,变管径使得随扬程升高排水能力下降比例减小了28%~42%;3)相较于传统抗滑桩,新型钢绞线抗滑桩不仅提高了抗折强度,而且韧性更好,可承载更大的变形而不发生破坏。以金沙水电站山梁子高位崩塌滑坡灾害治理为例,开展了从滑源区到运动区全过程的综合治理设计和应用实施,为金沙水电工程的安全施工与长期运行提供保障。  相似文献   

18.
全球重大自然灾害正深刻影响着人类的生存和发展,如何更有效地应对各类自然灾害尤为重要。2008年“5·12”汶川大地震后,“地球人都要有灾害意识,地球人都要有灾害教育”已深入人心,中国人的灾害意识和防灾技术水平均得到了较大幅度的提升。由于独特的区域地质构造、地形地貌和水文气象等条件,中国西部地区一直是水灾害频发的区域,防灾减灾工作已成为影响区域社会经济及国家整体发展的重要方面。作为国家布局在西部的高水平研究型综合大学,四川大学传承和创新了都江堰的治水智慧,在应对高坝泄洪与防洪安全、高坝工程结构安全、山洪泥沙灾害与滑坡防治、流域生态环境保护等山区水灾害方面进行了积极探索,取得了一系列重要成果。主要有:1)开发细观实验与模拟技术,揭示了高坝水力学复杂水流现象的细观机理,建立了更加可靠的判别准则和计算方法,形成系统的细观水力学体系,并创新地提出了多级泄洪原理与技术;2)原创性地提出了地质力学模型破坏模拟与综合法试验新技术,揭示了高坝工程整体结构安全响应机制,建立了能够准确反映受复杂地质环境及超标洪水等因素影响下高坝-坝基-库水整体结构安全评价体系;3)揭示了山洪与泥沙共同作用下“小水大灾”机制,提出了特大山洪泥沙灾害“降阶防控”技术,将山洪泥沙灾害致灾不确定性降到可防控范围;4)引入应用三维激光扫描仪等新设备与技术实现了滑坡变形监测从“点、线、面”拓展到三维空间整体,提升了水动力型滑坡的灾害监测预警水平以及灾害应急响应能力;5)针对滑坡-堰塞坝物质组成和结构特性变异性大的问题,提出了滑坡-堰塞湖分类应急处置与综合治理技术;6)针对西南地区地理、生态与环境特点,提出了生态需水配置和过鱼、梯级水库水温预测成套方法和低温水控制、高坝泄水总溶解气体(TDG)过饱和的预测与调控等一整套维护水生生物生境的关键技术,将生态环境保护研究从工程局部及单一水环境领域,拓展到山区流域整体系统并形成多学科领域交叉的综合科学技术体系。最后,针对中国西部山区河流水灾害的特点以及国家防灾减灾救灾的总体需求,提出了变化环境下的水灾害形成与演化、耦合致灾机理与临界判据、水灾害动力灾变机制与演化过程、突变河流的生境-生物相互作用机制、灾变河流的生态演变机制和新平衡态、水灾害监测预警和风险评估、基础大数据库与云平台、水灾害流域协同管理与灾后重建等一系列山区水灾害领域的重大前沿科学技术问题,有助于促进下一步防灾减灾相关学科领域研究工作的发展。  相似文献   

19.
随着全国联网工程的实施,杆塔不可避免地建设在陡坡、山脊、滑坡等地质灾害易发区域,在降雨的影响下,滑坡的变形甚至失稳会直接影响杆塔的安全,从而对电力系统和社会经济的发展造成巨大的影响。本文以燕子滑坡及杆塔基础为研究对象,基于物理模型试验,研究了极端降雨作用下不同相对位置杆塔基础滑坡有裂缝时的失稳过程。首先,设计了杆塔基础滑坡的物理模型试验方案,其次,分析了降雨过程中杆塔基础滑坡的宏观现象以及滑坡体和杆塔基础变形和力学特征的变化过程,最后,总结了降雨作用下杆塔基础滑坡成灾模式的分析流程。结果表明,降雨作用下,预制裂缝为雨水提供了优势渗流通道,使得预制裂缝深度、宽度逐渐扩大,并向滑坡右端逐渐延伸并贯通,导致右端坡脚局部发生失稳而形成多级局部牵引滑动破坏;滑坡上的杆塔基础和滑坡外的上部杆塔都随着滑坡一起向下滑移并发生向后倾倒,后者发生的时间晚于前者,但滑坡外的底部杆塔基础在整个过程中没有发生破坏。此外,降雨作用下燕子杆塔基础滑坡有裂缝时应以局部滑坡的变形和稳定性来分析杆塔基础的成灾模式。本文的研究成果可为杆塔基础滑坡实际工程提供一个直观上的认识和技术上的支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号