首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Titanium-containing diamond-like carbon (Ti-DLC) coatings were deposited on steel with a close-field unbalanced magnetron sputtering in a mixed argon/acetylene atmosphere. The morphology and structure of Ti-DLC coatings were investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Nanoindentation, nanoscratch and unlubricated wear tests were carried out to evaluate the hardness, adhesive and tribological properties of Ti-DLC coatings. Electron microscopic observations demonstrated the presence of titanium-rich nanoscale regions surrounded by amorphous carbon structures in Ti-DLC coating. The Ti-DLC coatings exhibit friction coefficients of 0.12–0.25 and wear rates of 1.82 × 10?9 to 4.29 × 10?8 mm3/Nm, depending on the counterfaces, sliding speed and temperature. The Ti-DLC/alumina tribo-pair shows a lower friction coefficient than the Ti-DLC/steel tribo-pair under the identical wear conditions. Increasing the test temperature from room temperature to 200 °C reduces the coefficient of friction and, however, clearly increases the wear rate of Ti-DLC coatings. Different wear mechanisms, such as surface polishing, delamination and tribo-chemical reactions, were found in the tribo-contact areas, depending on different wear conditions.  相似文献   

2.
《Wear》2006,260(7-8):825-831
The vacuum plasma spray (VPS) technique is a useful tool for designing the characteristics of the coatings and, thus, the tribological properties of coated components. In the present paper, the wear properties of iron boride coatings produced by means of VPS technique on AISI 1040 steel samples were evaluated as a function of their microstructural characteristics. One coating type was obtained by using Fe2B pure powder, the other with differentiated FeB + α-Fe blends, with the FeB content increasing and α-Fe content decreasing from the matrix to the surface. Wear tests were performed by means of a tribometer in block-on-ring configuration, without lubricant and in air, by using 40- and 60-N coupling loads and 0.8- and 1.6-m s−1 sliding velocities. On Fe2B coated samples, wear is essentially oxidative until the failure of the coating, the fragments of which cause a third body abrasion. On the FeB + α-Fe coated samples the wear mechanism is mainly oxidative and the coating totally wears out without spalling as a consequence of its graded structure, which succeeds in both improving the adhesion of the coating to the substrate and reducing the residual stress at the coating–substrate interface.  相似文献   

3.
We have investigated the cutting forces, the tool wear and the surface finish obtained in high speed diamond turning and milling of OFHC copper, brass CuZn39Pb3, aluminum AlMg5, and electroless nickel. In face turning experiments with constant material removal rate the cutting forces were recorded as a function of cutting speed between vc = 150 m/min and 4500 m/min revealing a transition to adiabatic shearing which is supported by FEM simulations of the cutting process. Fly-cutting experiments carried out at low (vc = 380 m/min) and at high cutting speed (vc = 3800 m/min) showed that the rate of abrasive wear of the cutting edge is significantly higher at ordinary cutting speed than at high cutting speed in contrast to the experience made in conventional machining. Furthermore, it was found that the rate of chemically induced tool wear in diamond milling of steel is decreasing with decreasing tool engagement time per revolution. High speed diamond machining may also yield an improved surface roughness which was confirmed by comparing the step heights at grain boundaries obtained in diamond milling of OFHC copper and brass CuZn39Pb3 at low (vc = 100 m/min) and high cutting speed (vc = 2000 m/min). Thus, high speed diamond machining offers several advantages, let alone a major reduction of machining time.  相似文献   

4.
5.
Ion implantation has found to be an effective approach to modify surface properties of materials. The present research investigates the effect of (1) nitrogen (N), and (2) carbon subsequently with nitrogen (C + N) implantations on the mechanical and tribological properties of the titanium–aluminium–silicon–nitride (Ti–Al–Si–N) coatings. Superhard TiAlSiN coatings produced by magnetron sputtering, of approximately 2.5 μm thickness, were post-treated by implantations of N or C + N at an energy level of 50 keV. The dose range was between 5 × 1016 and 1 × 1018 ions cm?2. After implantation, the tribological performance of the coatings was investigated by a ball-on-disk tribometer against WC–6 wt.%Co ball under dry condition in ambient air. The wear performance of the samples was examined by a variety of characterization techniques, such as secondary electron microscopy (SEM), 3D profilometry, atomic force microscopy (AFM), and micro-Raman. The results showed that the wear performance of the samples depended strongly on the implanted elements and doses. There was slight improvement on the samples implanted with N whereas significant improvement was found on the C + N implantations. Particularly, the friction coefficient of the sample with 5 × 1017 C+ cm?2 and 5 × 1017 N+ cm?2 could reach 0.1. In addition, the specific wear rate of the sample was extremely low (0.85 × 10?7 mm3/Nm), which was nearly two orders of magnitude below that of the un-implanted coating. The speculation of the mechanical and tribological analyses of the samples indicates that the improvement of the N implanted and C + N implanted TiAlSiN samples could be due to a combined effect of improved hardness, plus enhanced adhesive and cohesive strength. In addition, the improved performance of the C + N implanted samples could be explained by the formation of lubricating implanted-layer, which existed mostly in sp2 C–C and C–N forms. The formation of such implanted layer could lead to a change of wear mode from strong abrasive wear to mostly adhesive wear, and result in a drop of friction coefficient and wear rate.  相似文献   

6.
The fixed abrasive lapping process is presented to investigate its ability and accuracy in machining of interdigitated micro-channels on bipolar plates that are used in the proton exchange membrane fuel cell. A kinematical equation to describing the relative movement between the fixed abrasive lapping plate and workpiece is developed and used to numerically simulate the trajectories of a single diamond abrasive and fixed diamond abrasives with 17 different arraying forms, respectively. It is shown that the lapping trajectory can be superposed periodically when the rotation ratio is a rational number. By assessing the uniformity of lapping trajectories and opening ratio of the bipolar plate the optimized rotation ratio is obtained which is 1:1, and the best arraying form of the fixed diamond abrasives on the lapping plate has been obtained as well that is the arraying form of C4. Then, a set of fixed abrasive lapping tests were conducted to explore its ability in machining of interdigitated micro-channels on bipolar plates. It is found that larger material removal rate can be achieved by employing bigger lapping pressure and higher rotation speed for both copper and stainless steel samples considered in this study. The maximum cell power density is found to be about 165 mW cm−2 by testing the performance of a single micro fuel cell with a bipolar plate characterized by interdigitated micro-channels that shows a good cell performance.  相似文献   

7.
A long-range, precision fast tool servo (FTS) system was developed that is capable of accurately translating the cutting tool on a diamond turning machine (DTM) with maximum accelerations of 260 m s?2 and bandwidths of up to 140 Hz. The maximum displacement range of the cutting tool is 2 mm. The FTS utilizes a flexure mechanism driven by a voice coil actuator, a custom linear current amplifier and a laser interferometer feedback system. This paper describes the design of the electromechanical system, controller configuration and cutting tests to evaluate the system. Initially, low disturbance rejection and poor command following degraded the surface finish of machined test parts. Several techniques to add damping to the dynamic system were investigated to improve the generated surface finishes. Electromotive damping was applied inside the voice coil actuator, and two different viscoelastic damping materials were applied to the flexure mechanism. A control strategy consisting of linear and non-linear feedforward controllers and a proportional, integral and derivative (PID) feedback controller was implemented to accommodate the changed system dynamics. The workpieces were analyzed using form and surface inspection instruments to evaluate the overall system performance. A cylindrical part with five lobes cut across the face had a surface finish value between 20 and 30 nm Ra.  相似文献   

8.
《Wear》2007,262(7-8):868-875
The Ni-based surface coatings were prepared by a vacuum infiltration casting technique on copper substrate. The surface coatings were fabricated through copper melt penetrating into thin preforms whose thickness could change. By optimizing the processing parameters, compact surface coatings were achievable as confirmed through SEM observation. The surface coating was mainly composed of solid solution of Ni, solid solution of Cu and CrB. The macro-hardness of the coating was about HRC 58, and the micro-hardness of the coating shows a gradient distribution. The average micro-hardness of the coating was about HV450. Wear behaviour was investigated by using block-on-ring dry sliding linear contact at several loads (50 N–300 N) and two different sliding speeds (0.424 m/s and 0.848 m/s). Wear rate and friction coefficient were estimated using a method founded upon the PV factor theory. The surface oxidation predominated as the principle wear mechanism at low load. Meanwhile, adhesion and oxidation mechanism were observed when the coatings were tested at higher load more than 200 N. Friction coefficient decreased with increasing load and sliding speed.  相似文献   

9.
Stress free polishing method is preferred for a damage free surface of copper with ultra-flatness and ultra-smoothness. Such a surface offers a perfect substrate for integrated circuits and micro-electromechanical systems fabrication. A new polishing method, called electrogenerated chemical polishing (EGCP), is proposed based on the principle of the scanning electrochemical microscope (SECM) and the diffusion controlled chemical reaction. Roughness of a Cu surface is reduced from 100.5 nm to 3.6 nm by the proposed method. To demonstrate the planarization capability of this new method, a patterned Cu surface with an array of micro-columns is planarized with a peak-valley (PV) value from 4.7 μm to 0.059 μm.  相似文献   

10.
To reduce friction of elastomer parts moving against a metal counter body in dry conditions, two different surface treatment techniques were applied on elastomer parts: laser cladding and plasma treatment at atmospheric pressure.Polyamide 11 (PA 11) based coatings were produced on thermoplastic polyurethane (TPU) substrates by laser cladding. During ball-on-disc tribotesting the effect of a PA 11 coating was identical to that of a PA 11 + 9% MoS2 coating: friction of the TPU substrate was reduced with 40%. The incorporation of 15 wt% PTFE in the PA 11 coating resulted in a further decrease of the frictional force. A reduction of 80% of the frictional force of the TPU substrate was measured. The surface of the coatings before and after tribotesting was analysed.The plasma treatment of HNBR was done using a Plasmaspot® to form a plasma polymerised coating based on two different types of siloxanes. A reduction of 74–80% of the initial friction coefficient was measured in two different tribotest rig configurations: ball-on-disc and disc-on-disc. The resulting wear tracks were analyzed by SEM and EDX.  相似文献   

11.
In this study, high-velocity oxygen-fuel sprayed amorphous coatings have been heat treated at various temperatures to form microstructures with crystalline phases. The structure, micro-hardness, cavitation erosion resistance and erosion–corrosion resistance of these coatings are compared. Crystalline phases are discovered in the coatings after heat treatments at 650 °C and 750 °C. The coating heat treated at 750 °C exhibits the poorest cavitation erosion resistance in 3.5 wt% NaCl solution among all coatings due to the degraded corrosion resistance. However, the hardness of the crystallized coating can reach 1000 Hv and the erosion–corrosion resistance of the heat treated coating is better than the untreated one.  相似文献   

12.
《Wear》2006,260(1-2):123-127
In this research, the wear of electroless Ni–P and Ni–P–B4C composite coatings was reviewed. Auto catalytic reduction of Ni in nickel sulfate and sodium hypophosphate bath including suspended B4C particles with different concentration was used to create composite coatings with 12, 18, 25 and 33 vol.% of B4C particles. Coatings 35 μm thick were heat treated at 400 °C for one hour in an argon atmosphere and the wear resistance and friction coefficient of heat-treated samples were determined by block-on-ring tests. All wear tests were carried out at 24 °C, 35% moisture, 0.164 m/s sliding speed and about 1000 m sliding distance. Graphs show that an electroless Ni–P–B4C composite coating with 25 vol.% of B4C had the best wear resistance against a CK45 steel counterface.  相似文献   

13.
With the advance of contemporary technology, high precision surface finishing techniques for optical glasses are of great concern and developing to meet the requirements of the effective industrialized processes. Not only the used tools but also process parameters have great influence on the surface roughness improvements. In this paper, surface roughness improvement of Zerodur optical glass using an innovative rotary abrasive fluid multi-jet polishing process has been presented. For the same purpose, a tool for executing ultra precision polishing was designed and manufactured. Taguchi's experimental approach, an L18 orthogonal array was employed to obtain the optimal process parameters. ANOVA analysis has also been carried out to determine the significant factors. It was observed that about a 98.33% improvement on surface roughness from (Ra) 0.360 μm to (Ra) 0.006 μm has been achieved. The experimental results show that a surface finished achieved can satisfy the requirements for optical-quality surface (Ra < 12 nm). In addition, the influence of significant factors on surface roughness improvement has been discussed in this study.  相似文献   

14.
A hip joint wear simulator is used for the first time to evaluate the performance of acetabular liners and femoral heads made of silicon nitride ceramic coated with nanocrystalline diamond (NCD), grown by a hot filament chemical vapor deposition (HFCVD) method. Wear is assessed by gravimetry, by which volume and linear wear are estimated. Even with only one million cycles of test, a very stimulating finding is the extremely low wear rate of the head after the diamond polishing running-in step, of about 0.005 mm3/million cycles (Mc). This corresponds to a linear wear of 0.08 μm/Mc, one order of magnitude better than the best value currently known for ceramic-on-ceramic hip joints. Small scale abrasion is found as the dominant wear mechanism.  相似文献   

15.
Wear behavior of the HVOF deposited Cr3C2–NiCr and WC–Co coatings on Fe-base steels were evaluated by the pin-on-disc mechanism. The constant normal load applied to the pin was 49 N and sliding distance was 4500 m with velocity of 1 m/s, at ambient temperature and humidity. The specific wear rate of WC–Co coating was 3 mm3/N m and Cr3C2–NiCr coating was 5.3 mm3/N m. SEM/EDAX and XRD techniques were used to analyze the worn out surface and wear debris. The Fe2O3 was identified as the major phase in the wear debris. The wear mechanism is mild adhesive wear in nature.  相似文献   

16.
Nanocoining is a method of rapidly creating a cylindrical mold surface covered with features smaller than the wavelength of light. This mold can then be used in a roll-to-roll process to make surfaces whose functionality depends on the wavelength of the illumination. The die replaces the typical diamond tool used to produce overlapping grooves for applications such as reflective signs. The die has a face area approximately 20 μm2 that has been patterned in an FIB. It is mounted on a 2D ultrasonic actuator and follows an elliptical path that matches the surface speed of the moving workpiece during the short contact time and creates approximately 6000 features per impact. The spacing of die indents is controlled by the speed of the diamond turning machine axes such that a small overlap exists from previous indents as the die spirals around and along the mold surface. Because the die is small, the indentations must occur rapidly to make nanocoining a feasible process. This work focuses on the design and control of a nominally 40 kHz, 2D resonant actuator that is suitable for this process. A controller to automatically track resonance is described to maintain the elliptical motion during indentation. Methods of tuning the behavior of the actuator and maintaining a constant indent depth are proposed. Finally, 500 nm pitch feature indents were created on a brass workpiece at 40 kHz and scanning electron microscope (SEM) images of the features are provided.  相似文献   

17.
Ceramics coatings are materials widely used in gas turbines to provide thermal shielding of superalloy materials against excessive turbine temperatures. However, measurement of their surface temperatures using conventional radiation thermometers, more so in the presence of high ambient radiation and low emissivity is quite challenging. A multispectral method employing curve fitting technique to measure the temperature of such targets in the range of 800–1200 K and ambient temperature of 1273 K is implemented in this paper through simulation. Several simulated experiments were carried out to identify emissivity models best suited for multispectral radiation thermometry applicable to ceramic coatings. The best emissivity model applicable to yttria-stabilized zirconia of coating thickness of 330 μm in the wavelength range of 3.5–3.9 μm was found to predict temperature with an error of less than 1.5% in the presence and absence of background noise.  相似文献   

18.
Cr–N coatings were deposited on austenitic stainless steel, X6CrNiTi18-10, by means of the cathodic arc evaporation method at three substrate temperatures: 200 °C, 350 °C and 500 °C. All coatings were found to have a composition of Cr(N), CrN and Cr2N. The substrate temperature was found to have an influence on the hardness and Young's modulus of the Cr–N coatings. The investigation of nanocrystalline Cr–N coatings resistance to cavitation was performed in a cavitation tunnel with a slot cavitator and tap water as the medium. The estimated cavitation resistance parameters of the coatings were the incubation period of damage and total mass loss. It was found that the optimal coating cavitation resistance was deposited at 500 °C. The incubation period for the 500 °C deposition coating was the same as that of the uncoated X6CrNiTi18-10 steel, but the total mass loss was significantly lower than on the uncoated specimen. The scanning electron microscope analysis indicated that the damage process of the Cr–N coating mainly originates from the plastic deformation of the steel substrate–hard coating system, which appears by “micro-folding” of the surface. An increase of tensile stresses at the top of micro-folds initiates micro-cracks and delamination of Cr–N coating. The results of the investigation and the analysis indicate that the factors mainly responsible for cavitation resistance of the steel substrate/hard coating system are resistant to plastic deformation of the total system and coating adhesion.  相似文献   

19.
N.W. Khun  H. Zhang  J.L. Yang  E. Liu 《Wear》2012,274(1-2):575-582
The effect of wax-containing microcapsules incorporated in silicone composite coatings deposited on aluminum (Al) alloy substrates on the tribological performance of the coatings was systematically investigated. The wax-containing microcapsules were prepared via in situ polymerization. The tribological behavior of the composite coatings was evaluated using ball-on-disk tribological test. It was found that the increase in microcapsule concentration in the composite coatings apparently reduced the friction coefficient of the coatings because the lubricant released from the broken microcapsules during the tribological test of the coatings lubricated the rubbing surfaces. The results showed that the silicone composite coatings rubbed by a smaller Cr6 steel ball (3 mm diameter) under a lower normal load (100 mN) produced higher friction coefficients via reduced complication of their underlying strong substrates compared to the same coatings tested against a larger Cr6 steel ball (6 mm diameter) under a higher normal load (1 N).  相似文献   

20.
In the electrogenerated chemical polishing (EGCP), material removal rate (MRR) is inversely proportional to the processing gap. To polish a workpiece with a large area, high and uniform MRR is necessary, which prefers a small and uniform processing gap. Based on the principle of the hydrostatic support, a novel micro-gap control method is proposed. The method uniformly controls the gap between the electrode and workpiece to a micro level over a large area. A relationship between the gap size and the inlet pressure is derived theoretically and verified experimentally. The proposed method is successfully applied to the polishing of a Cu surface with a diameter of 50 mm. Promising results are obtained that surface roughness and flatness are reduced from average roughness (Ra) 82 nm and peak-to-valley (PV) value 290 nm to Ra 4 nm and PV 120 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号