首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Single crystalline silicon was plunge-cut using diamond tools at a low speed. Cross-sectional transmission electron microscopy and laser micro-Raman spectroscopy were used to examine the subsurface structure of the machined sample. The results showed that the thickness of the machining-induced amorphous layer strongly depends on the tool rake angle and depth of cut, and fluctuates synchronously with surface waviness. Dislocation activity was observed below the amorphous layers in all instances, where the dislocation density depended on the cutting conditions. The machining pressure was estimated from the micro-cutting forces, and a subsurface damage model was proposed by considering the phase transformation and dislocation behavior of silicon under high-pressure conditions.  相似文献   

2.
Porous silicon is receiving increasing interest from a wide range of scientific and technological fields due to its excellent material properties. In this study, we attempted ultraprecision surface flattening of porous silicon by diamond turning and investigated the fundamental material removal mechanism. Scanning electron microscopy and laser Raman spectroscopy of the machined surface showed that the mechanisms of material deformation and phase transformation around the pores were greatly different from those of bulk single-crystal silicon. The mechanism of cutting was strongly dependent on the direction of cutting with respect to pore edge orientation. Crack propagation was dominant near specific pore edges due to the release of hydrostatic pressure that was essential for ductile machining. Wax was used as an infiltrant to coat the workpiece before machining, and it was found that the wax not only prevented chips from entering the pores, but also contributed to suppress brittle fractures around the pores. The machined surface showed a nanometric surface flatness with open pores, demonstrating the possibility of fabricating high-precision porous silicon components by diamond turning.  相似文献   

3.
Y. Li  S. Danyluk 《Wear》1996,200(1-2):238-243
Single or multiple linear unidirectional scratches were made on (111) n-type single crystal silicon surfaces, at room temperature, by a dead-loaded spherical diamond indenter translated in the [110] direction at a speed of 5 cm s−1. The damage was measured with a simulated four-point probe technique consisting of a voltage detector designed and fabricated on the silicon wafer. The scratches were made between four electrical pads of the detector through which the electrical resistance of the damage region can be recorded in real time by a data acquisition system. The relative change in voltage, between 3 and 10%, was correlated to the time for the diamond to move past the probes and depended on dead load on the diamond, and the silicon properties. This measurement technique is used to develop a model for subsurface crack generation and propagation. If subsurface damage is modeled as a Hertzian crack then a measure of the voltage provides an estimate of the crack size. This relationship between the measured relative change in voltage and load on a pyramid diamond can be expressed as M(%) P4/3.  相似文献   

4.
Brittle material removal fraction (BRF) is defined as the area fraction of brittle material removed on machined surface. In the present study, a novel theoretical model of BRF was proposed based on indentation profile caused by intersecting of lateral cracks. The proposed model is related to surface roughness and the subsurface damage (SSD) depth of optical glass during precision grinding. To investigate the indentation profile, indentation tests of K9 optical glass were conducted using single random-shape diamond grains. The experimental results indicate that the indentation profile is an exponent function. To verify the proposed BRF model, BRF, surface roughness and SSD depth of K9 optical glasses were investigated by a series of grinding experiments with different cutting depths. The experimental results show that BRF is dependent on surface roughness and SSD depth. The relationship between BRF, surface roughness and SSD depth is in good accordance with the proposed theoretical model. The proposed BRF model is a reasonable approach for estimating surface roughness and SSD depth during precision grinding of optical glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号