首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
基于动力吸振原理的动车组车下设备悬挂参数设计   总被引:3,自引:2,他引:3  
为降低车体的弹性振动,将车体考虑成弹性欧拉梁,基于动力吸振原理进行多个车下设备的最优悬挂频率设计。建立弹性车体和车下设备的垂向耦合振动数学模型,研究不同设备悬挂频率、联接阻尼、质量和安装位置条件下的车体振动分布规律。建立车辆系统三维刚柔耦合动力学模型,仿真分析在实际线路激扰条件下,车体振动和平稳性随设备悬挂参数变化的分布规律。垂向耦合振动理论分析表明动力吸振原理可用于车下设备悬挂参数设计,验证了用于车体弹性振动减振的可行性和有效性,能够显著降低车体的垂弯模态振动;将大质量设备越靠近车体中部安装时车体的减振效果越好;设备悬挂频率应接近车体的垂弯模态频率,较优的弹性联接阻尼比应满足0.05~0.20。三维刚柔耦合动力学仿真结果验证了理论分析结果,车辆运行速度越高,减振效果越显著。试验台结果表明车下设备采用弹性联接可显著改善高速动车组的乘坐平稳性,与理论和仿真分析结果吻合。  相似文献   

2.
为了分析车下设备弹性悬挂参数对高速客车平稳性的影响,通过对CRH3型高速动车组的车体有限元模型进行模态计算,并利用多体动力学软件SIMPACK建立高速动车组单车刚柔耦合系统动力学模型,研究车下设备悬挂参数对车体振动的影响规律。通过对比分析刚性与弹性两种不同的车下设备联接方式,结果表明弹性联接方式能够对车体的弯曲振动起到一定的抑制作用,能够降低车下设备对车体振动的影响。当车下设备的垂向悬挂频率介于8~12Hz之间时,车体中部的垂向平稳性指标值最小,而车下设备垂向悬挂频率的改变对车体前端和后端的平稳性指标影响不大。这表明当车下设备的垂向悬挂频率接近车体的垂向弯曲频率时,只能在一定程度上降低车体中部的垂向振动。同样,车下设备横向悬挂刚度的改变对车体前端和后端的平稳性指标影响也不大,主要影响车体中部的横向平稳性指标,最终优化的车下设备横向悬挂刚度要大于1.2倍的垂向悬挂刚度。车下设备质量越重、离车体中部越近,车体中部的平稳性指标值越小即车辆的平稳性越好。  相似文献   

3.
轨道车辆车下设备一般通过弹性悬挂安装在车体边梁或者底板安装座上,在车辆行驶过程中,其悬挂参数会对车体地板的振动产生一定的影响。建立了考虑车体柔性与车下设备的车辆系统刚柔耦合动力学模型,对车辆行驶过程中车下设备悬挂参数对车体振动响应的影响进行了计算分析。结果表明,车下设备悬挂参数一定程度上影响车体的振动,进而提出了一种轨道车辆车下设备悬挂智能吸振设计的设想。  相似文献   

4.
基于国内某型高速动车组车下旋转设备的振动测试试验,建立考虑车体弹性和车下旋转设备不均衡振动的刚柔耦合动力学模型,分析车下旋转设备两级悬挂方式对车体和旋转设备振动行为的影响。通过车体有限元完整模型、子结构模型和模态试验的分析结果,确保动力学模型中的弹性车体可以反映车体实际的振动模态。研究结果表明,两级悬挂方式主要降低车体受到的不均衡振动,对其他频率下的振动影响较小,与单级悬挂相比较,其振动幅值降低了约一半,减振效果明显;两级悬挂系统中的框架质量、悬挂频率和阻尼比对车体和旋转设备的振动影响明显,通过选取合理的悬挂参数使得车体减振效果更明显;与单级悬挂比较,两级悬挂结构复杂,不适用于所有的车下旋转设备,为确保某些重要电器元件满足长期服役运营的需求,对其冷却风机等旋转设备采用两级悬挂方式可以获取良好的减振效果。  相似文献   

5.
提出包含车下设备的高速动车组整备状态车体模态频率数值计算方法,并通过有限元分析及模态试验,验证该方法的准确性。理论研究车下设备对车体振动传递特性的影响,定义车体的名义垂向一阶弯曲模态频率,并结合数值计算、振动传递分析与模态试验分析,分析车下设备悬挂参数对车体模态频率的影响机理。研究表明,采用弹性吊挂的车下设备将与车体形成耦合振动系统,且耦合振动系统在原车体垂向一阶弯曲模态频率附近产生一个新的低频振动分量和一个新的高频振动分量;低频振动振型为车下设备垂向振动与车体垂向一阶弯曲振动同相,高频振动振型为二者反相振动;随着车下设备悬挂刚度的变化,车体的名义垂向一阶弯曲频率将会发生"频率跳变"现象。  相似文献   

6.
基于Simiu风谱的功率谱密度函数,建立自相关模型(AR模型),模拟随高速列车移动的点的随机脉动风速时程,分析得到随机风作用在高速列车车体上的气动激扰。建立考虑车体弹性振动和多个车下悬吊设备的刚柔耦合动力学模型,分析不同环境风速下气动激扰对车体和悬吊设备振动行为的影响。研究表明,气动激扰对车体和悬吊设备的横向和垂向振动特性明显,随着风速的增大,车体和设备振动加剧,但是对于车体横向振动来说,车辆运行速度低于150 km/h,各风速下的差异不明显;合理选取车下悬吊系统的悬挂参数可以有效地降低车体和设备的振动,当环境平均风速5 m/s时,车体横向采用8 Hz的悬挂频率比1 Hz的降低约26.5%的振动;考虑气动激扰的车下悬吊系统振动行为研究可以更加真实地反映车体和悬吊设备的耦合振动关系,为设计更优异性能的车下悬吊系统提供参考价值。  相似文献   

7.
基于Matlab的动力总成悬置系统参数优化设计   总被引:1,自引:0,他引:1  
在推导了动力总成悬置系统固有频率及固有振型计算过程的基础上,分析并设置了系统各阶固有频率的范围,采用能量法解耦理论及序列二次规划(SQP)优化算法,利用Matlab编写出优化程序,对动力总成悬置系统进行了解耦设计.实例计算表明,通过该方法可使悬置系统解耦程度明显提高,有效地改善了车辆乘坐的舒适性.  相似文献   

8.
基于磁流变阻尼器的铁道车辆结构振动半主动控制   总被引:3,自引:0,他引:3  
在建立铁道车辆柔刚体系统垂直动力学模型的基础上,应用独立模态空间控制理论和最优控制理论,对影响车辆垂直运行平稳性的车体低阶弯曲结构振动和浮沉、点头等刚体振动进行控制。根据铁道车辆悬挂系统的特点,提出采用磁流变阻尼器作为作动器,以降低车体垂直加速度进而改善运行平稳性为目标的半主动控制策略,来实现在性能改善和能量消耗之间的协调,在ADAMS和Matlab/Simulink?环境下,应用机械系统和控制系统联合仿真技术,对采用半主动控制策略的整车性能进行仿真研究。仿真结果显示该半主动控制策略能较好地抑制车体第一阶弯曲模态的结构振动,并可改善车辆运行平稳性,针对铁道车辆系统的磁流变阻尼器在设计上是可行的。  相似文献   

9.
随着铁道车辆运行速度的提高,复杂的车下设备对车体的振动影响不能忽视.将车体考虑成等截面欧拉梁,建立了车辆刚柔耦合的垂向动力学简化模型,考虑了设备弹性悬挂和刚性悬挂两种连接方式对车体振动的影响.结果显示,弹性悬挂能够有效抑制设备高频振动能量的传递,降低车体的弹性振动.为了讨论车下设备弹性悬挂参数与车体结构振动的匹配关系,详细地分析了不同悬挂刚度和阻尼对车体振动的影响.当刚度设置在合适的范围时,由于车下设备与车体间同向和反向运动,使车下设备的传递率下降,车体的振动降低.同时,提高悬挂阻尼也在一定程度上能够抑制车体的振动.  相似文献   

10.
城轨列车的车载设备在工作时会影响车辆运行的平稳性,采用弹性悬挂并设置合理的悬挂参数是提升列车运行平稳性的有效方式.基于刚度经验公式,计算出城轨列车车载设备弹性悬挂的初始悬挂刚度,然后利用多目标优化软件Isight强大的数据分析、优化能力,结合多体动力学软件UM,以车体的振动控制为目的 ,对变压器和前、后空调的各项悬挂参数进行优化,得到车载设备最佳悬挂参数,根据最佳悬挂参数设计出符合要求的车载设备悬挂装置结构.通过对比优化前、后的各振动指标可以发现:横向和垂向的振动加速度均方根指标整体优化较为明显,最大优化率达到了23.25%;而平稳性指标方面均有不同程度的优化,但整体优化幅度小于横向和垂向振动加速度均方根指标,最大优化率为11.38%.  相似文献   

11.
针对高速列车服役环境的复杂性,造成车体振动幅值增大和旅客乘坐舒适性降低等问题。基于LQR算法的最优控制理论,提出车下悬吊系统安装半主动悬挂的思路,并建立考虑车体弹性和车下悬吊设备的高速列车垂向耦合振动模型,分析LQR算法的加权系数R对车体减振的影响规律,并对比分析被动悬挂和半主动悬挂的车体振动控制效果。研究结果表明,以降低车体弹性振动为控制目标,减小加权系数R有利于降低车体的弹性振动,而且当加权系数减小至1×10~(-5)时,车体弹性振动会出现明显的降低,但是不会对车体的刚性振动产生影响;半主动悬挂对车体振动控制的效果与车体弹性振动能量密切相关,车体弹性振动能量越大,半主动悬挂的控制效果越好;当车体出现弹性振动时,半主动悬挂的车体减振效果明显优于被动悬挂,在车体弹性振动最明显的速度级下,半主动悬挂下的车体振动RMS值降低了约一半。通过半主动悬挂对车体减振效果的研究,为工程化应用提供了理论支撑。  相似文献   

12.
《机械》2018,(11)
高速列车车下悬挂设备振动对车辆运行的平稳性、安全性和舒适性有着重要影响,尤其是涉及乘客时,车下有源设备传递至车体的振动是乘客感到不舒适的最主要来源。因此,有必要探究车下有源设备的隔振效果,改善车辆的运行性能。运用功率流方法,通过导纳与阻抗矩阵的四端参数方程,计算车下设备通过隔振系统传递至车体的功率流和力传递率,研究了隔振系统各参数对系统功率流传递及隔振效果的影响。理论分析表明,隔振系统刚度决定着隔振效果,在实际设计中要严格把控这一参数。  相似文献   

13.
基于柔性车体的铁道车辆主动悬挂的模糊控制研究   总被引:2,自引:0,他引:2  
采用有限元的分析方法,建立了某型软卧车体的有限元分析模型,并将柔性车体在铁道车辆动力学分析软件ADAMS/Rail12.0中组装成多刚体/柔体耦合的单节车辆动力学分析系统。样机平台上的动力响应分析计算结果反映了多刚体/柔体耦合的实际车辆系统的振动响应。设计了一个新型的因子可调的模糊控制器来抑制柔性车体的动态响应。实现了基于柔性车体的车辆主动悬挂的隔振研究,表明基于柔性车体的车辆主动悬挂系统同样能使车体的振动响应幅值降至理想状态。  相似文献   

14.
高速铁道客车车体受轨道激扰力的作用产生弹性振动,影响客车运行平稳性。为了分析车体弹性振动与车体悬挂参数关系,基于刚柔耦合动力学原理,建立了客车垂向动力学模型,根据共振理论及模态叠加原理计算了系统固有频率和响应功率谱,分析了车辆系统悬挂参数和运行参数对振动的影响。仿真发现弹性车体振动响应大于刚性车体,车体一阶垂弯振动对弹性振动的贡献最大。在满足结构条件下,适当降低一、二系悬挂垂向阻尼、一系悬挂垂向刚度可减小车体弹性共振,系统各个部件自振频率控制、车体垂向悬挂阻尼控制可实现整车模态及局部有害模态控制。  相似文献   

15.
为了研究振动给料机偏心轴振动特性及其固有频率对电机控制的影响,以ZWS380x96型振动给料机偏心轴为研究对象,结合一些原始参数进行三维建模,并将建好的模型导入有限元分析软件Workbench进行振动模态分析,得到偏心轴的前六阶固有频率及振型。通过分析各阶固有频率,确定了三相异步电动机合理的工作频率,避开了偏心轴与电动机的频率共振区域,有利于延长电动机的使用寿命,改善振动给料机的筛选效果。  相似文献   

16.
多自由度振动系统固有频率及主振型计算分析是研究其振动特性的基础,矩阵迭代法是计算固有频率及主振型的基本方法之一.根据矩阵迭代的方法,利用MATLAB编程并验证程序的正确性.通过程序的运行,能快速获得多自由度振动系统的固有频率以及主振型,为设计人员提供了防止系统共振的理论依据,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础.  相似文献   

17.
下吊设备对高速列车弹性车体垂向运行平稳性影响   总被引:2,自引:0,他引:2  
建立了包含下吊设备的铁道车辆垂向刚柔耦合动力学模型,设计了下吊设备隔振元件参数,并分析了隔振元件参数、设备质量及吊挂位置对车辆运行平稳性及设备本身振动的影响,结果表明,合理设置下吊设备隔振参数可以有效减小车体弹性振动;隔振元件静挠度即刚度在隔振中起主要作用;随着车辆运行速度的改变,静挠度最优值会相应偏移,针对所研究的高速车辆而言,静挠度选取6 mm时,可以保证车辆垂向运行平稳性良好,且下吊设备振动不剧烈.结果还表明,质量大的设备宜靠近车体中部悬挂.  相似文献   

18.
由于车辆各个车轮受路面的激励,车辆簧上质量的振动耦合了各个车轮引起的振动。为使车辆有效减振,建立了带主动悬架的整车非线性模型并利用微分几何方法对该非线性模型进行解耦。经过解耦的悬架系统簧上质量的垂向、俯仰和侧倾振动互相独立,成为独立的线性子系统,从而可以实现对其单独控制。设计了减振控制律,对解耦的悬架系统减振。仿真结果表明,簧上质量各个方向振动大幅衰减,说明该控制方法是有效的。  相似文献   

19.
为研究车下设备对动车组舒适度的影响,建立考虑车体弹性和多个车下设备的高速动车组垂向动力学模型,实现设备的质量参数、结构参数和悬挂参数等参数化建模,基于频域分析法推导系统加速度频响函数表达式,采用随机轨道不平顺激励功率谱和舒适度滤波函数计算舒适度指标,基于最优同调理论设计设备的最优悬挂频率和阻尼比并进行数值验证。结果表明,车体垂弯频率越高、设备质量越大且越靠近车体中心安装,舒适度指标越小,车辆乘坐舒适性越好,建议将大质量设备(4 t及以上)悬挂在距车体中心5 m以内;设备质心纵向偏心导致其吊挂点的作用力力臂改变和转动惯量增加,造成舒适度指标略有增加;在优化设备悬挂参数时,可以忽略车体结构阻尼的影响;设备质量越大,最优悬挂频率越低、最优悬挂阻尼比越大,且应当基于加速度响应设计最优悬挂阻尼比,最优同调条件为车体和设备的相位差接近π/2;针对所述车辆,设备最优悬挂频率和阻尼比分别为7 Hz和0.2~0.3,车体加速度功率谱中的弹性振动主频得到充分抑制。  相似文献   

20.
根据某国产商用车悬置系统测量的各项参数,建立动力总成悬置系统6自由度的动力学模型。运用能量解耦原理法及序列二次规划优化算法,以悬置系统各阶固有频率、动力总成质心位移和各悬置元件刚度为约束条件,以振动能量解耦率为优化目标,对动力总成悬置系统进行优化设计。试验结果表明,运用能量解耦法能使悬置系统取得良好的解耦效果,改善悬置系统的隔振性能,提高汽车乘坐舒适性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号