首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(8):1273-1279
Phenylbutazone was crystallized from solutions by the liquid antisolvent recrystallization technique. Acetone was used as a solvent, and distilled water was selected as an antisolvent. The influence of processing parameters, such as drug concentration, temperature, injection rate of drug solution, and mixing method of drug solution with antisolvent, on the particle size distribution were investigated. Furthermore, to examine the variation of resulting particle size in the presence of the ultrasound, the ultrasonic wave was applied to all experiments. Larger crystals were obtained when crystallization took place at higher temperatures. The enhancement of drug concentration favored decreased particle size. Regarding the mixing method of the drug solution and antisolvent, smaller particles were produced when the drug solution was injected into antisolvent, and larger crystals were obtained when the antisolvent was injected into drug solutions. As the injection rate of the drug solution increased, the average particle size decreased. The processed particles consistently exhibited an acicular crystal habit. The presence of ultrasound caused a reduction of particle size under all operational conditions.  相似文献   

2.
《分离科学与技术》2012,47(10):1402-1410
Antisolvent crystallization was performed to precipitate roxithromycin particles from organic solutions. Roxithromycin was dissolved in acetone at different concentrations and each solution was injected into an aqueous antisolvent leading to prompt particle formation. The effects of various experimental variables (solution injection rate, solution concentration, and temperature) on the particle size of roxithromycin were investigated. In addition to these variables, the effect of ultrasound on the resulting particle size was investigated by changing process parameters such as wave intensity (power output), sonication time, and the moment of ultrasonic application. When the drug solution was rapidly injected into the antisolvent, smaller crystals were obtained. Smaller crystals were obtained when solutions with high drug concentrations were used and also when the crystallization took place at lower temperatures. The particle size decreased with the increasing power output of ultrasound and with the increasing sonication time. It was also found that the ultrasonic wave induced the reduction of the particle size only when the ultrasound was applied to the solution at the initial stage of crystallization.  相似文献   

3.
The paper presents and compares two methods for the synthesis of fine particles of the high explosives HNS and HMX by ultrasonic treatment and solvent/antisolvent crystallization. The effect of ultrasonic treatment on the particle size of explosives was studied by varying the amplitude and frequency of ultrasonication for different time periods using an ultrasonic probe and an ultrasonic bath. Solvent/antisolvent recrystallization was performed by varying the process parameters including stirring rate, antisolvent temperature etc. In addition to FT‐IR spectroscopy and thermal analysis by TGA/DSC; the particle size and shape of fine powders of the explosives HMX and HNS were determined using particle size analysis and scanning electron microscopy (SEM). Ultrasonic treatment of the probes resulted in the finer grains of HMX compared to solvent‐antisolvent crystallization. However in the case of HNS, solvent‐antisolvent crystallization produced finer particles compared to ultrasonication.  相似文献   

4.
The aerosol solvent extraction system process (ASES), which is one of the supercritical anti solvent processes (SAS), was used to produce poly(L-lactic acid) (PLLA) into the submicron particles. Dichloromethane (DCM, CH2Cl2) and carbon dioxide were selected as a solvent and as an antisolvent for PLLA, respectively. The objective of this study was to investigate the effect of the various process parameters such as temperature, pressure, and solution concentration on PLLA particles. With increasing temperature and pressure, particle size was increased. Also, higher PLLA concentration led to larger particle size and broader particle size distribution. A scanning electron microscope (SEM) was used to observe the morphology and size of PLLA particles recrystallized by ASES process. The mean particle size and its distribution of processed particles were measured by using a laser diffraction particle size analyzer (PSA).  相似文献   

5.
气体抗溶剂法制备乙基纤维素微细颗粒   总被引:1,自引:0,他引:1       下载免费PDF全文
利用超临界流体制备微细颗粒是一门新兴的技术,将其中的气体抗溶剂(GAS)法首次应用于制备乙基纤维素微粒,在系统的近临界和超临界范围进行了较为详细的实验研究.在实验范围内,制得微粒的平均粒径为2~15 μm.研究得到温度、压力、不同有机溶剂对微粒粒径及其分布的影响,并应用相平衡知识对结果进行了分析和讨论.此研究为制备粒径较小,具有缓释、靶向、黏附等功能的乙基纤维素含药微粒做了准备.  相似文献   

6.
The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 ± 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 °C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine.  相似文献   

7.
Sulfamethizole was crystallized using both the supercritical and liquid antisolvent processes. Acetone and N,N-dimethyl formamide (DMF) were selected as solvents for the pharmaceutical compound, and carbon dioxide and distilled water were used as antisolvents. In the supercritical antisolvent process, the effects of experimental conditions such as carbon dioxide injection rate, type of solvent, and temperature were investigated. In the liquid antisolvent process, the effect of ultrasound on the properties of crystal was examined. The various crystal habits such as tabular, platy, acicular, and prismatic were observed depending on the process and experimental conditions. Differential scanning calorimetry (DSC) measurement revealed that the carbon dioxide injection rate affected the crystallinity of sulfamethizole particles. Larger crystals were obtained at higher temperatures in the two antisolvent processes. The particle size distribution was mostly affected by the antisolvent injection rate and the application of ultrasound.  相似文献   

8.
Phenylbutazone was recrystallized from its solutions by using a supercritical fluid antisolvent process. It was dissolved in acetone and supercritical carbon dioxide was injected into the solution, thereby inducing supersaturation and particle formation. Variation in the physical properties of the recrystallized phenylbutazone was investigated as a function of the crystallizing temperature and the carbon dioxide injection rate. The recrystallized particles showed cleaner surfaces and more ordered morphology compared to the particles obtained by other methods such as solvent evaporation. X-ray diffraction patterns indicated that the crystallinity of the particles had been modified upon the recrystallization. Differential scanning calorimetry measurement revealed that the crystallizing temperature influenced the thermal stability of the resulting crystals. Larger crystals were produced when the carbon dioxide injection rate was reduced.  相似文献   

9.
Submicron particles of L-polylactic acid (L-PLA) without residual solvent were prepared by a continuous supercritical antisolvent (SAS) recrystallization process. Methylene chloride (CH2C12) was used as a carrier solvent of L-PLA. Experiments were performed with changing process parameters such as pressure and temperature at constant concentration. Also, L-PLA initial concentrations in methylene chloride were varied from 0.3 to 4 wt%. The flow rates of CO2 and solution, which were introduced into the precipitator, and nozzle diameter were kept unchanged in all of the experiments. It was found that the SAS process gives fine tuning of particle size and particle size distribution (PSD) by simple manipulations of the process parameters. In all cases of SAS recrystallization experiments, the formed spherical fine particles with a smooth surface were non-agglomerated and free flowing. Mean particle size of the L-PLA microparticles formed was varied from 0.1 to 1 μm by means of adjusting the system pressure and/or temperature.  相似文献   

10.
The sphericity and size of ammonium perchlorate (AP) particles significantly influence the properties of composite propellants. As the AP particles become more spherical, the accumulation coefficient increases, the viscosity during casting decreases, and the particle loading and burning rate increase. Hence, the production of micronized AP particles with an average size between 1 and 20 μm is important to increase the loading percentage of AP in the composite propellant. Here, the Taguchi experimental design was used to optimize the solvent-antisolvent crystallization (SAC) process for the preparation of micronized AP particles with higher sphericity. SAC parameters such as the type of antisolvent, the solvent-to-antisolvent ratio, the antisolvent temperature, the stirring speed, and the retention time were investigated at four levels. The type of antisolvent and the solvent-to-antisolvent ratio were found to mainly contribute to improving the sphericity and size of the AP particles, respectively.  相似文献   

11.
The aim of this study was to prepare micronized taxifolin powder using the supercritical antisolvent precipitation process to improve the dissolution rate of taxifolin. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters, such as temperature (35-65 °C), pressure (10-25 MPa), solution flow rate (3-6 mL/min) and concentration of the liquid solution (5-20 mg/mL) on the precipitate crystals were investigated. With a lower temperature, a stronger pressure and a lower concentration of the liquid solution, the size of crystals decreased. The precipitation temperature, pressure and concentration of taxifolin solution had a significant effect. However, the solution flow rate had a negligible effect. It was concluded that the physicochemical properties and dissolution rate of crystalline taxifolin could be improved by physical modification such as particle size reduction using the supercritical antisolvent (SAS) process. Further, the SAS process was a powerful methodology for improving the physicochemical properties and radical scavenging activity of taxifolin.  相似文献   

12.
The aim of this study was to improve dissolution rate of poorly water-soluble drug, cilostazol, using supercritical antisolvent (SAS) process. The effect of process variables, such as pressure, temperature, drug concentration, type of solvents, feed rate ratio of CO2/drug solution, on drug particle formation during SAS process was investigated. Particles with mean particle size ranging between 0.90 and 4.52 μm were obtained by varying process parameters such as precipitation vessel pressure and temperature, drug solution concentration, solvent type, feed rate ratio of CO2/drug solution. In particular, mean particle size and distribution were markedly influenced by drug solution concentration during SAS process. Moreover, the drug did not change its crystal form and the operating parameters might control the ‘crystal texture’ due to the change in crystallinity and preferred orientation during SAS process, as confirmed by differential scanning calorimetry and powder X-ray diffraction study. In addition, the dissolution rate of drug precipitated using SAS process was highly increased in comparison with unprocessed drug. Therefore, it is concluded that the dissolution rate of drug is significantly increased by micronization of cilostazol, leading to the reduction in particle size and increased specific surface area after SAS process.  相似文献   

13.
The supercritical antisolvent (SAS) precipitation process as a “green” alternative to specialty particles recrystallization was successfully used to generate poly(L ‐lactide) acid (L‐PLA) from dichloromethane (DCM) solution using CO2 as antisolvent. The influence of main operating parameters on the synthesis of L‐PLA particles in the SAS process was methodically examined. In particular, antisolvent addition rate (30, 40, 50, and 60 g/min), temperature (35, 40°C, 45°C, and 50°C), solute concentration (50, 75, 100, and 150 mg/10 ml), and solution addition rate (1, 2.5, 5, and 7.5 ml/min). These parameters could be tuned to give a mean particle diameter of 0.62 μm. It was found using scanning electron microscopy and laser diffraction that increasing the antisolvent addition rate and the solution addition rate, while decreasing the temperature and solute concentration, led to a decrease in the L‐PLA mean particle diameter. Furthermore, a unimodal particle size distribution was obtained at the higher solution and antisolvent addition rates. Spherical‐like primary particles have been obtained in all the experimental runs; thus, no change of particle morphology with the process parameters has been noticed. These results manifested that SAS recrystallization process is a valuable technique to generate reproducibly polymer particles with controlled size and size distribution. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

14.
《分离科学与技术》2012,47(12):2645-2660
Abstract

Three sulfa drugs (sulfathiazole, sulfamethizole, and sulfabenzamide) were crystallized using carbon dioxide and water as antisolvents, and the effects of the type of solvent, the crystallization temperature, and the antisolvent injection rate were investigated. Sulfathiazole crystallized in granulate form from acetone, but it was crystallized in acicular form from methanol. Sulfamethizole was crystallized in tabulate form from acetone and as plates from DMF. Sulfabenzamide was precipitated in the form of prisms from acetone and of aciculates from ethyl acetate. As the crystallization temperature increased from 30 to 50°C, the average particle size increased from 6.5 to 10.5 µm for sulfathiazole, 29.5 to 53.1 µm for sulfamethizole, and 33.0 to 59.8 µm for sulfabenzamide. The crystal habit tended to become more needle‐like as the antisolvent injection rate increased. Larger particles were produced when the antisolvent was changed from carbon dioxide to water.  相似文献   

15.
Recrystallization of the nonsteroidal anti‐inflammatory drug salicylamide was investigated using a batch supercritical antisolvent (SAS) precipitation process. Carbon dioxide was used as the antisolvent, and acetone, ethanol and ethyl acetate were used as solvents. Particle morphology determined by SEM showed that particles with a regular shape were obtained from the SAS process. The crystal structure analyzed by XRD showed that the intensities of specific peaks were modified. No decomposition or deterioration was confirmed by DSC measurements where the melting temperature remained the same after SAS recrystallization. The effects of process parameters were investigated with acetone as the solvent. At a higher pressure of 110 bar, a higher saturation concentration of 90 %, and a lower temperature of 293 K, the length of the rectangular particles decreased to 50 μm. This showed a significant change from the irregular and broken particle shapes with particle sizes up to 200 μm before processing by SAS.  相似文献   

16.
The crystal habit of tamoxifen was modified using antisolvent crystallization techniques. Tamoxifen was crystallized from organic solvents using two different antisolvents (water and carbon dioxide). The habit of the precipitated crystals was modified by changing the process conditions, such as the solution and antisolvent mixing rate, the organic solvent, the presence of ultrasonic waves, and the addition of external additives. Particle size, crystal habit, particle aspect ratio and powder XRD patterns of the precipitated tamoxifen crystals were measured. With water as the antisolvent, the particle size of tamoxifen was significantly reduced compared to that of the raw material. When the antisolvent was carbon dioxide, the particle size was an order of magnitude greater than that of the raw material. The average aspect ratio of the tamoxifen crystals ranged from 1.8 to 16.2. The presence of ultrasonic waves caused a significant reduction in the aspect ratio, as well as the particle size. Furthermore, the addition of external additives was found to influence the crystal habit of tamoxifen.  相似文献   

17.
Particle formation by the liquid antisolvent (LAS) process involves two steps: mixing of solution–antisolvent streams to generate supersaturation and precipitation (which includes nucleation and growth by coagulation and condensation) of particles. Uniform mixing conditions ensure rapid and uniform supersaturation, making it a precipitation controlled process where the particle size is not further affected by mixing conditions and results in precipitation of ultra-fine particles with narrow particle size distribution (PSD). In this work, we demonstrate that the use of an ultrasonically driven T-shaped mixing device significantly improves mixing of solution and antisolvent streams for precipitation of ultra-fine particles in a continuous operation mode. LAS precipitation of ultra-fine particles of multiple active pharmaceutical ingredients (APIs) such as itraconazole (ITZ), ascorbyl palmitate (ASC), fenofibrate (FNB), griseofulvin (GF), and sulfamethoxazole (SFMZ) in the size range 0.1–30 μm has been carried out from their organic solutions in acetone, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and ethanol (EtOH). Classical theory of homogeneous nucleation has been used to analyze the result, which suggests that higher nucleation rate results in finer particle size. Interestingly, experimental determination of degree of supersaturation indicates that higher supersaturation does not necessarily result in higher nucleation rate and nucleation rates can be correlated to solvent polarity.  相似文献   

18.
Solvent–antisolvent recrystallization employed for size reduction of HNS has been described and the effect of various parameters such as stirring rate, effect of antisolvent type, antisolvent temperature, ultrasonication, etc. was investigated. Purified HNS, produced by hot solvent recrystallization of production grade crude HNS, of mean particle size ∼95 μm was used for preparation of ultrafine particles of HNS. Solvent contamination in terms of residual solvent was determined by 1H NMR and GC‐MS analysis. In addition, ultrafine HNS has been characterized for purity (HPLC, 1H NMR), particle size and shape (PSA and SEM), specific surface area (BET analysis), thermal behavior (TGA, DSC), sensitivity (impact, friction), etc. The results have been compared with C‐HNS. UF‐HNS was >99% pure with mean particle size <1 μm. SEM showed submicrometer size rods like particles of HNS as the final material.  相似文献   

19.
Batch supercritical antisolvent precipitation (SAS) process was used to coprecipitate Cefuroxime Axetil amorphous (CFA, antibiotic) and Polyvinylpyrrolidone (PVP-K30) for preparing drug-polymer composite particles. Solutions of CFA and PVP-K30 in methanol with overall concentrations of 50-150 mg/ml and polymer/drug ratios of 1/1-4/1 were sprayed into the CO2 at 70-200 bar and 35-50 °C with drug + polymer solution injection rates of 0.85 and 2.5 ml/min. Spherical particles having mean diameters of 1.88-3.97 μm, distribution ranges of 0.82-9.7 μm (the narrowest distribution) and 0.91-46.64 μm (the broadest distribution) were obtained. Mean particle size was not affected significantly with the change of process parameters. It was only affected by pressure change. On the other hand particle size distribution was affected by pressure, temperature, drug + polymer solution injection rate and concentration. It was observed that temperature and polymer/drug ratio affected the particle morphology most. The drug release rate of SAS-coprecipitated CFA-PVP (1/1) particles was almost 10 times slower than the drug alone. As the ratio of the polymer increased drug release rate also increased due to the wetting effect of PVP.  相似文献   

20.
The supercritical antisolvent (SAS) process was used to modify the solid–state properties of sulfathiazole and chlorpropamide. Acetone, methanol, and ethyl acetate were employed as solvents for the pharmaceutical compounds, and carbon dioxide was used as an antisolvent. The effects of process parameters on the precipitate crystals such as carbon dioxide injection rate, type of solvent, and temperature were investigated. The SAS processed crystals show more ordered appearances with clean surfaces and sharp angles compared with the unprocessed particles. The crystal habit changed from tabular to acicular when the carbon dioxide injection rate increased. The X-ray diffraction patterns of the two compounds revealed variations of crystallinity and crystal orientations depending upon the injection rate, where the degree of crystallinity was found to be inversely proportional to the rate of injection. The analysis of differential scanning calorimetry indicated that both the injection rate and temperature influence the crystal's thermal stability which is related to the solid–solid transition and fusion. The crystal size significantly increased when the nucleation and crystal growth took place at a slow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号