首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于杭州市2014—2018年夏季(7—9月)的臭氧(O3)监测数据,综合运用Lamb-Jenkinson大气环流分型方法 、近地面风场特征参数和后向轨迹聚类方法,识别出杭州市夏季O3污染的主要大气环流型,总结气团传输轨迹类型,并在此基础上探讨2016年G20峰会期间的气象条件与O 3污染变化的关系.结果表明,研究期间...  相似文献   

2.
针对日益严重的臭氧污染问题,利用绍兴市3个国控监测站点2016—2018年的监测数据,对绍兴市臭氧污染的时空分布特征进行研究,并综合考量温度、湿度、风向、风力等气象因素的影响。结果表明,绍兴市2017年臭氧最高时均质量浓度为355μg/m~3,显著高于2016年(267μg/m~3)。臭氧日浓度曲线呈单峰型特征,峰值出现于14:00左右,谷值出现于6:00左右。2016年夏季臭氧浓度最高,而2017年与2018年春季臭氧浓度最高。臭氧高值首次出现日期提前与温度有关。气象因素上,温度≥30℃,40%≤相对湿度70%,风向为东北风时,绍兴市更易出现臭氧高值。2018年绍兴市西南部臭氧浓度峰值显著低于其他区域,可能是NO_x等污染物减排后传输作用变化所致。  相似文献   

3.
2013年北京市臭氧时空分布及预报   总被引:1,自引:0,他引:1  
根据2013年1-12月北京市O3小时浓度监测数据,探讨了北京市O3的时空分布特征,并建立了O3回归统计模型。结果显示:2013年北京市O3 8 h全年平均为84.75 μg/m3,O3超标日主要集中在5-9月份;O3日变化呈现单峰型分布,一般在15:00、16:00左右达到峰值,且存在明显的周末效应,空间分布上,中心城区O3浓度相对较低,生态植被优良的北部、西部山区站点浓度较高;建立的O3回归统计模型对北京市2013年O3 8 h临近预报的级别准确率在75%以上,能较好地反映O3浓度变化趋势。  相似文献   

4.
基于内蒙古自治区12个盟市的近地面臭氧(O3)浓度及气象等其他相关数据分析了内蒙古自治区的O3污染特征,并提出重点管控区域和管控时段。结果表明,2019—2021年基本反映了内蒙古自治区的O3浓度现状,这3年12个盟市的O3质量浓度均未超过《环境空气质量标准》(GB 3095—2012)二级标准限值(160μg/m3),空间分布上呈西部和东南部高,中部和东北部低的特点。O3防治典型区乌海及周边地区、河套灌区、“一湖两海”应进行重点管控,重点管控时段应为5—8月。以包头市为例研究发现,产业结构和机动车尾气是O3污染的重要原因,温度大于25℃且风速小于5 m/s时温度和风速增大易促进O3浓度升高。  相似文献   

5.
利用2013—2017年珠三角城市空气质量监测站的大气常规污染物逐时监测数据,探究珠三角区域臭氧(O3)污染年际变化、季节变化、日变化特征。结果表明,珠三角O3浓度秋季高冬春低,在一年之内呈现2月、5月、9—11月从低到高3个峰值;在一天之内呈现昼高夜低的单峰结构,峰值大多出现在午后15:00时。珠三角中部城市超标天数较多,沿海城市超标天数较少,大部分城市每年O3超标天数逐渐增多。O3月变化和日变化与NO2呈现负相关。总体而言,NO2平均浓度越高的城市,O3昼夜爬升值越高。  相似文献   

6.
基于2022年8月6—18日一次典型臭氧(O3)污染过程监测的数据,从时间、空间维度开展挥发性有机物(VOCs)浓度水平、臭氧生成潜势(OFP)分析,并运用正定矩阵因子分解(PMF)模型和基于观测的箱体模型(OBM)识别VOCs的主要来源和O3生成机制。结果表明:本次O3污染过程中,受不利气象条件的影响,泰州市VOCs体积分数和NO2浓度在污染中阶段比污染前阶段分别升高了8.2%、24.2%,是O3污染加重的主要原因。对OFP贡献较高的是烯/炔烃、芳香烃,间/对二甲苯是3个监测站点污染前阶段OFP贡献最高的物种,异戊二烯、乙苯、间/对二甲苯分别是兴化市、姜堰区、海陵区监测站点污染中和污染后阶段OFP贡献最高物种。源解析结果显示,溶剂使用源(26.5%)、工业源(20.9%)、移动源(20.5%)是泰州市污染期间VOCs的主要污染源。此次O3污染过程中泰州市的O3生成机制存在显著的时空差异性。时间上,由于各监测站点大气中氮氧化物(NO<...  相似文献   

7.
基于中国臭氧污染的严峻形势,阐述了美国臭氧污染的起因、科学认识过程、管控措施及法律法规的框架体系。结果表明,美国通过科学研究锁定影响臭氧污染的关键问题,由单一管控挥发性有机物(VOCs)逐步过渡至VOCs和NOx协同控制,由局部管控过渡至区域联防联控,并取得了显著效果。1980—2018年,美国臭氧浓度下降了31.0%。美国臭氧污染的防控历程有望为中国臭氧污染的防控研究和政策实施提供借鉴。  相似文献   

8.
臭氧-生物沸石处理有机微污染水研究   总被引:1,自引:1,他引:1  
研究了臭氧氧化、生物过滤、沸石吸附对微污染水中有机物的不同处理效果和组合工艺的竞争、协同效果。结果表明:对于CODMn为6.30~7.20 mg/L的原水,在臭氧投加量为2.1 mg/L,接触时间为15 min时,CODMn的去除率可达10.8%;沸石吸附对CODMn的平均去除率为11.5%,生物沸石对CODMn的平均去除率为32.3%。臭氧-沸石工艺的CODMn平均去除率为15.6%,小于工艺组成单元的单独去除率的加和,各单元在有机物处理上存在竞争关系。臭氧-生物沸石工艺的CODMn平均去除率为45.5%,大于臭氧氧化和生物过滤独立单元去除率的加和,各单元之间为协同作用关系,因此宜采用臭氧-生物沸石工艺处理有机微污染水体。  相似文献   

9.
使用天津市2013—2017年的连续臭氧观测数据,分析了天津市的臭氧污染特征,并使用基于排放清单处理模型(SMOKE)/中尺度气象模型(WRF)/多尺度空气质量模型(CAMx)的臭氧来源解析技术对天津市不同季节的臭氧来源情况进行研究。结果表明,天津市臭氧污染整体波动变化,年均浓度总体呈现先下跌后上升的趋势;天津市臭氧夏季浓度较高,春季、秋季浓度较低,冬季浓度最低。天津市臭氧污染区域性特征明显,区域输送贡献远大于本地贡献,本地臭氧来源贡献率仅占8%~20%。河北省、山东省、内蒙古自治区等地区污染物排放对天津市臭氧污染有较大贡献。天津市本地源对臭氧的贡献季节差异较大,其中工业源贡献较大,其在春季、秋季对臭氧贡献率分别为49%、43%。夏季天然源、工业源、交通源与电厂源对臭氧贡献率较为接近,均在20%~30%;冬季其他源(包括生物质燃烧源、居民燃烧源等)对臭氧贡献率最大,为54%。未来应根据臭氧污染来源的地域特征和季节特征采取不同臭氧污染防治策略。  相似文献   

10.
为研究长三角南部典型盆地城市臭氧(O3)污染特征及气象影响因素,对丽水市2015—2019年监测数据进行统计分析.结果表明:丽水市O3浓度呈逐年上升趋势,月O3浓度呈"M"型分布.受盆地地形影响,O3超标日(O3日最大8 h平均质量浓度超过160μg/m3)小时浓度呈明显双峰型特征,该特征增加了O3超标率.丽水市O3超...  相似文献   

11.
2012年6—10月,在我国北方某焦化厂厂界附近开展了O3、NO x、CO体积分数在线监测及VOCs样品采集分析工作,获得了夏、秋两季焦化厂厂界O3及其前体物的体积分数及其日变化趋势。焦化厂厂界附近O3、NO、CO体积分数均呈单峰型日变化,O3体积分数的季节差异不明显,夏季仅略高于秋季,而NO、CO体积分数秋季高于夏季,作为二次反应产物的NO2,其变化幅度秋季比夏季强烈。夏季TVOCs在各监测时段的小时体积分数呈现先上升后下降的日变化趋势,而秋季则呈现逐渐下降的日变化趋势。由较小VOCs/NO x的比值可初步判断,该焦化厂所在区域的大气光化学臭氧生成潜势处于VOCs控制区。在焦化厂下风向厂界附近,夏、秋两季TVOCs平均体积分数分别为(43.8±45.0)×10-9和(26.7±29.6)×10-9,苯系物、烷烃、烯烃的平均体积分数分别为(34.3±28.1)×10-9和(14.4±14.8)×10-9、(5.3±11.8)×10-9和(7.0±7.7)×10-9、(4.3±5.0)×10-9和(5.3±7.1)×10-9。夏、秋两季焦化厂附近臭氧生成潜势贡献最大的是苯系物(47.6%~65.8%),其次是烯烃(28.0%~41.9%),再次是烷烃(6.3%~10.5%)。  相似文献   

12.
杭州市空气颗粒物污染特征及变化规律研究   总被引:3,自引:0,他引:3  
根据2006—2010年杭州市空气颗粒物的监测数据及2002、2006、2008年空气颗粒物来源解析结果,对杭州市空气颗粒物浓度、化学组分与污染来源等特征的变化规律进行分析,以期为空气颗粒物污染控制提供决策依据。结果表明,近年来杭州市PM10浓度有所下降,但一类功能区PM10仍超出《环境空气质量标准》(GB 3095—1996)的要求(≤0.04mg/m3),杭州市空气颗粒物污染以细颗粒物为主,空气颗粒物的二次转化、机动车尾气尘等产生的二次粒子污染相对严重;煤烟尘对杭州市PM10的贡献率下降明显,城市扬尘、二次粒子和机动车尾气尘对PM10的贡献率有所增加,是杭州市PM10的主要来源。  相似文献   

13.
为了研究香港港口氮氧化物和臭氧(NO2、NOx和O3)的周末效应,本文收集香港港口15年的污染数据进行统计分析。首先分析污染物的日变化特征,结果发现工作日NO2和NOx浓度高于周六,周六浓度高于周日的情形。与此相反,工作日O3浓度低于周六,周六浓度低于周日。其次分析污染物年变化,结果表明近些年NO2和NOx呈降低趋势,O3呈增加趋势。还发现NO2、NOx和O3的周末效应减弱。然后使用线性回归分析光化学氧化剂(OX,O3+NO2)的局地和区域贡献,结果发现受港口作业周期性变化的影响,OX的局地贡献表现出工作日高于周六,周六高于周日的周末效应现象。最后分析了OX局地贡献的昼夜差异,结果显示白天OX局地贡献的周末效应明显强于晚上。  相似文献   

14.
正随着雾霾天气的增多,PM_(2.5)污染正受到人们的关注。与此同时,臭氧污染在一些地区开始呈季节性加剧趋势,臭氧污染防治不得不提上日程。国务院出台的《大气污染防治行动计划》提出,要加强灰霾、臭氧的形成机制、来源解析、迁移规律和监测预警等研究,为污染治理提供科学支撑。据监测,国庆长假前后,北京及珠三角地区的臭氧污染严重,并一定程度上加剧了PM_(2.5)污染。环境保护部公布的数据表明,2013年上半年,全国74个城市平均超标天数比例为45.2%,主要污染物就是PM_(2.5)和臭氧。目前,臭氧已经成为夏秋季节影响长三角和珠三角地区空气质量的主要污染物之一。近地面的臭氧是光化学烟雾的主要组成成分。随着城市化进程的加快和汽车保有量的急剧增加,我国多地曾出现过光化  相似文献   

15.
胡晓  董群  涂小萍  徐璐  常婉婷  张国超 《环境污染与防治》2021,43(8):1035-1040,1053
臭氧是光化学污染的主要污染物之一,开展近地面臭氧浓度变化特征及其与气象条件相关性分析对防治大气污染十分重要.利用2014—2019年浙江112个环境监测站点的臭氧观测资料、欧洲中期数值预报中心ERA-Interim再分析资料分析发现:浙江春、夏季臭氧污染较重,杭州、嘉兴、金华、衢州5—9月臭氧浓度高,宁波4—5月臭氧浓...  相似文献   

16.
为深入了解中山市挥发性有机物(VOCs)来源及对臭氧的影响,基于2021年1—12月VOCs在线监测数据,对大气VOCs体积分数、组分特征、臭氧生成潜势(OFP)和来源情况进行了研究。结果表明:中山市大气VOCs体积分数日均值为2.61×10-9~1.14×10-7,年均值为2.18×10-8,其中,烷烃是占比最大的组分,占60.0%,其次是芳香烃和烯烃,分别占25.9%和9.3%。除乙烯外,臭氧污染日前十物种体积分数较非污染日上升6%~49%。中山市OFP平均值为228.43μg/m3,其中,芳香烃和烯烃是贡献率较高的组分,间/对二甲苯、甲苯、邻二甲苯和异戊二烯等是关键活性物种。VOCs主要来源有机动车排放源、油气挥发源、工业源、燃烧源、溶剂使用源、天然源。溶剂使用源和工业源是OFP贡献率最高的污染源,贡献率分别为25.5%和24.0%,燃烧源、油气挥发源、天然源和机动车排放源贡献率分别为14.1%、13.3%、11.6%和11.5%。  相似文献   

17.
为更好地管控和治理绍兴市柯桥区工业园区的挥发性有机物(VOCs),利用柯桥区现有的两工业园区VOCs监测站点(园区1站、园区2站)2019年3月至2020年2月的监测数据分析柯桥区工业园区VOCs污染特征并进行溯源.结果表明:园区1站每月VOCs质量浓度平均值为125μg/m3,园区2站为137μg/m3,都呈现出3月...  相似文献   

18.
19.
通过对电感工作方式放电生成臭氧的研究和臭氧对发动机排放的影响分析,详细地论述了臭氧发生控制器的工作原理和放电指叉的设计方法。  相似文献   

20.
珠三角秋季臭氧污染来源解析   总被引:4,自引:0,他引:4  
秋季是珠三角臭氧污染最严重的季节,选取2004年秋季珠三角典型臭氧污染过程,运用臭氧来源解析技术等分析手段,研究珠三角臭氧污染特性,分析并量化各排放源区各类源对受体点的臭氧贡献。结果表明,东莞市对珠江口地区的臭氧峰值有重大贡献,下午2-3点东莞市前体物的臭氧贡献最大可达40ppb;而广州市区的前体物排放主要影响顺德区和南海区。在珠三角,排放源区一般对下风向40km范围内的地区臭氧贡献最大。秋季大多数情况下珠三角西部(江门东湖)臭氧受中部主要排放源区臭氧前体物排放与输送的影响很大,广州和佛山地区对江门东湖的臭氧峰值贡献达50ppb左右。交通尾气排放对珠三角各受体点的臭氧贡献最大,交通源对重污染区受体点臭氧的贡献最高可达40ppb~50ppb。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号