首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
为解决碳纤维复合材料和钛合金钻孔加工过程中钻头磨损严重、加工孔质量差等问题,研制了一款超声振动钻削装置.超声振动钻削装置的性能取决于声振系统设计的好坏.本文首先对声振系统的结构设计进行了理论探讨,然后采用ANSYS软件对其进行了模态分析和谐响应分析.在碳纤维复合材料和钛合金的初步钻削试验中,超声振动钻孔和普通钻孔相比轴向钻削力分别减少了48%和31%,结果表明所研制的超声振动钻削装置具有良好的钻削性能.  相似文献   

2.
旋转超声钻削碳纤维复合材料钻削力和扭矩的研究   总被引:1,自引:0,他引:1  
针对碳纤维增强树脂基复合材料(CFRP)加工过程中的问题,对金刚石套料钻旋转超声钻削CFRP-T700型复合材料展开了研究。研究发现,钻削力随主轴转速的增加具有减小的趋势,而扭矩则随着主轴转速的增加,呈现增大的趋势;与传统加工相比,旋转超声振动钻削可降低切削力及扭矩达56.6%和39.1%,有效抑制加工缺陷的产生。初步建立了切削力和扭矩之间的数学模型,并通过试验对切削力和扭矩之间的比例常数k加以验证。研究结果表明,旋转超声钻削CFRP在降低切削力和扭矩方面有较大优势。  相似文献   

3.
高温合金Inconel 718是一种典型的难加工材料,本文利用DEFORM-3D软件对无涂层、TiC单涂层和TiC/Al2O3复合涂层硬质合金刀具进行钻削高温合金Inconel 718的仿真分析,研究在不同钻削条件下复合涂层刀具的切削性能,并进行钻削实验进行验证。结果表明:TiC/Al2O3复合涂层刀具能有效降低钻削轴向力和钻削温度,其轴向力降低幅度最高为20%,钻削温度最高降低了35%。通过钻削实验验证了仿真模型的准确性,可为实际钻削加工高温镍基合金Inconel 718中选择涂层种类及钻削参数提供参考。  相似文献   

4.
针对小口径火炮身管钻削加工时存在的切屑堵塞和内膛质量问题,设计了一套低频振动装置。通过振动钻削和普通钻削的对比试验,该装置能有效地解决堵屑难题,并提高身管的内膛钻削质量。  相似文献   

5.
钛合金在传统麻花钻常规钻孔后,会产生较大的孔出口毛刺,这将导致孔出口去毛刺困难且影响紧固件装配质量。本文引入一种八面钻新刃型刀具,并利用超声振动钻削技术,进行了八面钻超声振动钻削钛合金出口毛刺形成的基础理论和试验研究。理论分析了普通钻削和超声振动钻削的出口毛刺形成过程以及超声振动钻削的出口毛刺降低机理,同时试验验证了超声振动钻削的出口毛刺降低效果。结果表明:相比于钛合金普通钻削,超声振动钻削极大地提高了钻头刀具的切削能力,分别降低了钻削力16%~20%、切削温度18%~21%和出口毛刺高度82%~89%,有效降低了装配过程的去毛刺困难和生产成本。  相似文献   

6.
李远霄  焦锋  张世杰  张顺  王雪  童景琳 《航空学报》2021,42(10):524802-524802
针对碳纤维增强复合材料(CFRP)和钛合金叠层结构在传统钻削过程中切削温度高、加工质量差等问题,基于低频振动钻削和高频(超声)振动钻削的优势,提出了高低频复合振动钻削的加工方法。采用自主研制的高低频复合振动钻削装置,对CFRP/钛合金叠层结构进行了制孔试验,对比研究了普通钻削、超声钻削、低频振动钻削和高低频复合振动钻削4种方式下的切削力、钛合金切屑形貌、切削温度和CFRP孔加工质量。结果表明:4种加工方式中,高低频复合振动钻削的轴向力波动相对较大,切削温度显著降低,产生的钛合金切屑呈不连续扇形且整体尺寸最小,CFRP孔出入口及孔壁的损伤程度最低,显著提高了加工质量,为复合材料叠层结构一体化制孔加工提供了指导意义。  相似文献   

7.
采用双锋角钻头和普通麻花钻对T700碳纤维复合材料(CFRP)进行钻削试验,从钻削轴向力、制孔出口质量和表面粗糙度等方面分析双锋角钻头在不同加工参数下制孔特点,并与普通麻花钻进行对比。试验结果表明:与普通麻花钻对比,双锋角钻头钻削CFRP时钻削轴向力减小约20%,制孔出口质量更好,孔壁的表面粗糙度值减小,体现优异的切削性能更适合CFRP的制孔加工。  相似文献   

8.
TC4-DT钛合金是重要的损伤容限结构材料之一,研究其在钻削工艺中表面完整性对于其损伤容限分析具有重要意义。本文通过试验研究了不同材质、直径钻头,在不同钻削速度下对钻孔附近被切削材料的残余应力及钻孔表面粗糙度的影响,总结了钻削参数对于表面完整性的影响规律,并建立了可预测钻削残余应力分布的有限元仿真模型。  相似文献   

9.
10.
超声振动干式镗削40CrMnSiMoVA钢的试验研究   总被引:4,自引:0,他引:4  
研究了干式切削条件下 ,超声振动镗削4 0CrMnSiMoVA钢的工艺方法及加工精度、表面粗糙度、表面硬化程度的规律性  相似文献   

11.
超声振动镗削40CrMnSiMoVA(50—55HRC)钢的试验研究   总被引:1,自引:0,他引:1  
研究了将超声波的能量施于刀具,刀具以超声频振动镗削40CrMnSiMoVA(55HRC)的工艺方法;通过试验研究了加工精度、表面粗糙度、表面硬化程度的规律性。  相似文献   

12.
赵波  别文博  王晓博  常宝琪 《航空学报》2020,41(1):423207-423207
螺旋沟槽变幅杆能够实现超声振动模式的转换,对单激励纵-扭复合振动的实现具有结构简单和操作可行的优点。基于弹性波场论对超声波在复合变幅杆中发生模式转换的原因及振动特性进行分析,并从超声波的入射角入手,分析入射角对振动模态的影响。在圆锥复合变幅杆的圆锥段开设螺旋沟槽,建立三维模型,并进行有限元仿真和试验验证,结果表明超声波入射角的改变对纵-扭复合变幅杆的扭-纵比影响显著。当入射角为46.5°和67.2°时,在变幅杆的输出端纵振模态和扭振模态发生明显的变化,实测的扭-纵比前者较后者提高约5.1倍。通过普通钻削与超声钻削实验对比,在不同的入射角条件下,超声钻削的平均钻削力均低于普通钻削力。与入射角为67.2°时对比,当入射角为46.5°时,平均钻削力降低约46%,并提高了制孔的质量,从而为模态转换的纵-扭复合变幅杆设计提供一定的理论依据。  相似文献   

13.
针对碳纤维增强复合材料在传统钻孔过程易出现分层缺陷,采用金刚石空心套刀和超声振动加工技术进行了CFRP超声振动套孔分层抑制机理分析。理论分析了传统麻花钻钻孔与金刚石套刀普通套孔过程的分层机理及评价,超声振动套孔对分层抑制的机理,并且进行了实验验证。结果表明:相比于CFRP普通套孔,超声振动套孔能够有效提高套刀切削性能和排屑效果,降低钻削力12.5%~19.2%,抑制切屑粉尘黏附套刀和料芯堵塞套刀,抑制CFRP分层缺陷形成,改善孔表面质量。  相似文献   

14.
在飞机部件装配过程中,CFRP/钛合金叠层结构的连接十分常见,而由于两种材料迥然不同的材料性能,导致制孔后存在孔径阶差,严重影响了CFRP/钛合金结构的疲劳强度。本文开展了低频轴向振动辅助钻削的正交实验,分析了低频振动辅助钻削工艺参数与切削力和切屑形态的关系以及工艺参数对CFRP/钛合金孔径阶差的影响。结果表明,由于低频振动辅助钻削刀具的周期性进给,钛合金切屑由连续长切屑变为扇形短屑,减少了对CFRP的扩孔效应,钻削区域切削热降低,平均轴向力降低;另外,振幅和进给量对孔径阶差的影响较为显著,而主轴转速的影响较小,且孔径阶差随着振幅的增大先减小后增大,随着进给量的增大而增大。通过试验验证和分析,确定面向孔径控制的最优工艺参数组合方案:主轴转速为600 r/min、进给量为0.02 mm/r、振幅为150μm。  相似文献   

15.
为解决齿轮钢淬硬表面在传统磨削中加工效率低、表面完整性差的难题,引入超声振动辅助磨削加工技术。开展了淬硬齿轮钢AISI 9310和轴承钢GCr15切向超声振动辅助平面磨削加工对比试验,通过分析磨削力和磨削表面质量,对齿轮钢淬硬表面超声振动辅助磨削加工工艺进行研究。结果表明,超声振动辅助磨削能有效降低磨削力和比磨削能,随着材料去除率的增大,超声磨削力比更加稳定,有利于提高加工效率。利用本次试验数据建立的经验公式可以有效预测白刚玉砂轮磨削AISI 9310与GCr15淬硬表面时的法向磨削力大小,误差在10%以内。当磨削速度、工件进给速度和磨削深度分别为15 m/s、8 m/min和15μm时,相比于传统磨削,超声振动辅助磨削中AISI9310与GCr15的表面粗糙度分别降低了9.47%和7.39%,并减少了加工表面缺陷,有利于提高工件表面完整性。  相似文献   

16.
针对颗粒增强钛基复合材料(PTMCs)磨削加工过程中磨削温度高、表面质量差、加工效率低及砂轮使用寿命短等问题,在传统磨削加工的基础上引入了超声复合加工技术.开展了普通磨削和超声磨削PTMCs材料对比试验,研究了磨削工艺参数对磨削力、表面粗糙度以及显微硬度的影响规律,并深入地分析了超声振动的影响机制.结果表明,超声振动可...  相似文献   

17.
TC4钛合金因其优异的综合机械性能在航空、航天工业中得到了广泛应用,但其高塑性和低导热系数引起的刀具–切屑黏附是制约其铣削加工性能提升的一个关键因素.针对TC4钛合金铣削加工性能提升的需求,提出了一种基于刀具纵弯复合超声振动辅助铣削的加工方式,通过控制刀具纵弯复合超声振动的幅值和相位实现可控的间歇式切削,降低刀具–切屑...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号