首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以SBS(苯乙烯-丁二烯-苯乙烯嵌段共聚物)、APAO(α-烯烃共聚物)分别作为沥青的改性剂,并就APAO改性沥青、SBS改性沥青和APAO-SBS复合改性沥青的性能进行了对比。研究结果表明:APAO在沥青中具有良好的分散性,其可有效改善沥青的高温稳定性和抗老化性,并且能有效降低沥青的温度敏感性;APAO-SBS改性沥青可形成稳定的立体网状结构,从而有效限制了沥青体系的运动,故APAO-SBS改性沥青具有良好的抗老化性,并且能有效降低沥青的温度敏感性。  相似文献   

2.
研究动态硫化乙烯-乙酸乙烯酯共聚物(EVA)/苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)复合改性沥青的动态力学性能,并与基质沥青和SBS改性沥青进行对比.结果表明,与基质沥青和SBS改性沥青相比,EVA/SBS复合改性沥青的复数模量和抗车辙因子明显增大、损耗因子明显减小,说明其高温弹性和高温抗车辙变形能力增强、温敏性显著下降;动态硫化EVA/SBS复合改性沥青的高温弹性、高温抗车辙变形能力和温敏性进一步改善.  相似文献   

3.
用乙烯-乙酸乙烯酯共聚物(EVA)和苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)复合改性沥青,研究了EVA/SBS复合改性沥青动态硫化前后的软化点、针入度(25 ℃)、延度(5 ℃)及贮存稳定性,并用应变控制流变仪与光学显微镜分析了复合改性沥青的动态力学性能和相态结构.结果表明,动态硫化处理后,EVA/SBS复合改性沥青的延度和针入度下降,而软化点提高;随着硫黄用量的增加,EVA/SBS复合改性沥青的高温贮存稳定性提高,温度敏感性降低;随着EVA用量的增加,EVA/SBS复合改性沥青的高温贮存稳定性先提高后降低;当EVA质量分数为3%、硫黄质量分数为3%时,其对沥青的改性效果最佳;改性剂微粒与沥青的相容性和稳定性明显改善.  相似文献   

4.
研究了坡缕石对苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性沥青性能的影响.结果表明,坡缕石特殊的层链状结构和大的比表面积不仅改善了SBS改性沥青的低温性能和抗老化性能,同时形成的 .网状结构使SBS改性沥青稳定性增强.  相似文献   

5.
考察了苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)和加入含硫稳定剂的SBS改性沥青老化后的动态力学性能、黏度变化和低温物理性能。结果表明,SBS与含硫稳定剂的加入改善了老化后沥青的高温性能;老化后的改性沥青表现出更好的高温刚性,蠕变劲度降低,蠕变速率增大,老化后沥青的低温性能提高,且长期使用性能良好。  相似文献   

6.
采用聚烯烃弹性体(POE)对苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性沥青进行复配改性,制备了POE/SBS改性沥青混合料。考察了POE用量对SBS改性沥青抗老化性能的影响。结果表明,POE/SBS复配改性能提升沥青混合料的高温抗老化性能,且对低温性能有一定的改善效果。POE改善了SBS改性沥青混合料的抗车辙和抗老化性能,但会在一定程度上降低其低温韧性。当在沥青中加入质量分数分别为4%和3%的SBS和POE,POE/SBS改性沥青混合料的综合性能较佳。  相似文献   

7.
用苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性苯乙烯-丁二烯-丙烯腈共聚物(ABS),制备3D打印用ABS改性复合材料,研究了SBS的用量对ABS复合材料性能的影响。采用熔体流动速率仪表征了复合材料的熔体流动速率,万能力学试验机和悬壁梁冲击试验机测试了复合材料的力学性能。研究结果表明,随SBS用量增加,复合材料的熔体流动速率增加,5%SBS的加入能使复合材料的熔体流动速率增加42.1%;随SBS用量增加,复合材料的冲击强度增加,弯曲强度降低;SBS能提高复合材料的断裂伸长率,增加其韧性,但同时也使拉伸强度降低。  相似文献   

8.
用4种苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性2种不同组分的基质沥青,通过温度扫描试验和常规实验,研究了改性沥青在不同剪切与发育时间的动态力学性能与物理性能,分析了在生产过程中影响SBS改性沥青质量的因素。结果表明,SBS改性沥青的损耗因子(tanδ)峰值在剪切发育过程中均减小;SBS改性含有适量沥青质和芳香分的沥青A经过发育后,其tanδ峰值降低,且在40—90℃出现平台值;SBS改性组分不平衡的沥青B的tanδ随温度上升而增加;SBS改性沥青A的储能模量(E’)与损耗模量(E”)在剪切初期有较大幅度增加,在发育过程中,其变化幅度很小,E’的增加幅度比∥大;SBS改性沥青B的E’与E”在发育过程中有较大幅度增加;适当的剪切发育时间使SBS改性沥青的延度增大,黏度增加;发育20h后,SBS改性沥青的延度明显下降,黏度增长幅度过大;相容性好的沥青需要适当的发育过程,以不超过4h为宜,相容性差的沥青不需要发育过程。  相似文献   

9.
炭黑对聚合物改性沥青贮存稳定性的影响   总被引:2,自引:0,他引:2  
高光涛  张隐西 《橡胶工业》2008,55(4):226-230
探讨炭黑添加方式和炭黑用量对聚合物改性沥青贮存稳定性的影响.结果表明,先将炭黑与苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)/低密度聚乙烯(LDPE)共混物(简称SE)混炼,再用SE/炭黑混炼胶对沥青进行改性,得到的改性沥青贮存稳定性较好;当沥青为100份时,炭黑的适宜用量为2.25份,SE(SBS/LDPE质量比为2/1)的适宜用量为4.5份.  相似文献   

10.
SBS改性沥青的老化行为   总被引:8,自引:0,他引:8  
用红外光谱、凝胶渗透色谱、动态黏弹仪研究了苯乙烯-丁二烯嵌段共聚物(SBS)改性沥青的薄膜烘箱老化行为。结果表明,SBS改性沥青老化后增加了羰基和亚砜基;SBS和沥青的相对分子质量都发生了变化。沥青的相对分子质量增加,相对分子质量分布变宽,SBS特征峰消失;SBS改性沥青老化程度较基质沥青的小,耐低温性能更好;SBS改性沥青老化后,软化点增加,针入度减小,低温延度降低。  相似文献   

11.
This article presents experimental results related to rheological viscoelastic properties of polymer modified bitumens, PmBs. Experiments were performed by a dynamical shear rheometer before and after thermo‐oxidative aging. Two types of bitumens with different asphaltene contents were modified by the addition of two types of reactive ethylene terpolymers, Elvaloy AM, and Elvaloy 4170, with a different percentage of reactive functional group, glycidylmethacrylate, GMA. Results of the investigation indicate that the degree of reactive polymer modification is a function of bitumen type, bitumen‐polymer compatibility, and polymer concentration. Polymer modification improves the following physical properties of the base bitumen: penetration, softening point, temperature susceptibility, and elastic recovery. Reactive polymers are effective binder modifiers that improve the susceptibility to high temperature of asphalt mixes, and also their rutting resistance, contribute to their good storage stability and make them less sensitive to aging. This is a result of the formation of a chemical bond between the polymer and molecules of asphaltenes. POLYM. ENG. SCI., 54:1056–1065, 2014. © 2013 Society of Plastics Engineers  相似文献   

12.
13.
Gordon D. Airey 《Fuel》2003,82(14):1709-1719
The use of polymers for the modification of bitumen in road paving applications has been growing rapidly over the last decade as government authorities and paving contractors seek to improve road life in the face of increased traffic. Currently, the most commonly used polymer for bitumen modification is the elastomer styrene butadiene styrene (SBS) followed by other polymers such as styrene butadiene rubber, ethylene vinyl acetate and polyethylene. This paper describes the polymer modification of two penetration grade bitumens with SBS. Six polymer modified bitumens (PMBs) were produced by mixing the bitumens from two crude oil sources with a linear SBS copolymer at three polymer contents. The rheological characteristics of the SBS PMBs were analysed by means of conventional as well as dynamic mechanical analysis using a dynamic shear rheometer (DSR). The results of the investigation indicate that the degree of SBS modification is a function of bitumen source, bitumen-polymer compatibility and polymer concentration, with the higher polymer concentrations in a high aromatic content bitumen producing a highly elastic network which increases the viscosity, complex modulus and elastic response of the PMB, particularly at high service temperatures. However, ageing of the SBS PMBs tends to result in a reduction of the molecular size of the SBS copolymer with a decrease in the elastic response of the modified road bitumen.  相似文献   

14.
N-Phenylmaleimide–styrene copolymers (PMS) and reactive N-phenylmaleimide–styrene–p-hydroxystyrene (HSt) terpolymers (PMSH) containing p-hydroxyphenyl groups were used to improve the toughness of bisphenol A diglycidyl ether epoxy resin cured with methyl hexahydrophthalic anhydride. PMS and PMSH were effective modifiers for epoxies. The morphologies of the modified resins depended on modifier structure and content. The most effective modification for the cured resins was attained because of the co-continuous structure of the modified resins in both PMS and PMSH modification systems. When using 15wt% of PMS (M¯w 125000), the fracture toughness, KIC, for the modified resin increased by 230%, with retention of flexural modulus and glass transition temperature, but with a loss of flexural strength, compared with the values for the unmodified epoxy resin. When using PMSH as the reactive modifier, the efficiency decreased with increase in HSt content, because of the increasing extent of dispersion of the PMSH-rich continuous phases. In the modification with 10wt% PMSH (1·0mol% HSt unit, M¯w 294000), the modified resin had balanced physical properties. © of SCI.  相似文献   

15.
Block copolymers, especially styrene‐butadiene‐styrene three‐block copolymers (SBS), are recognized as especially effective asphalt modifiers because of their thermoplastic elastomeric properties. The concentration of copolymer, its ability to swell by the maltenic oils, and the processing variables are essential in the development of a three‐dimensional network in the polymer‐rich phase that enhances the vis‐coelastic properties of these modified binders. This swollen polymer phase may influence the mechanical properties of the modified bitumens and synthetic binders. This paper deals with the influences that processing variables exert on the linear viscoelastic properties of oil/SBS mixtures in a wide range of temperatures. From the experimental results obtained we may conclude that most of the oil/SBS blends studied are highly structured thermoplastic gels above a critical SBS concentration that depends upon temperature, time of processing and surrounding atmosphere.  相似文献   

16.
采用马来酸酐(MAH)和苯乙烯(St)作为接枝单体,通过溶液聚合法合成接枝极性基团的苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS),然后与聚苯乙烯(PS)基体、碳酸钙(CaCO_3)粒子复合,用傅立叶红外光谱仪表征接枝处理前后SBS表面化学结构的变化;并研究了SBS改性对复合材料微观结构和力学性能的影响.结果表明:双单体溶液聚合法成功地将极性基团接枝在SBS链上;填充SBS-g-MAH后,促进CaCO_3在PS基体中的分散、改善PS-CaCO_3粒子间界面粘接,起到良好的增容作用;SBS-g-MAH和CaCO_3粒子对PS基体具有协同增强增韧作用,同时能提高复合材料的拉伸强度和冲击强度.  相似文献   

17.
Polymer‐modified bitumens are very important to the transportation sector. Polyethylene is one of the most used polymers in bitumen modification. The effects of the structural parameters of polyethylene on its dispersion in bitumen and the performance of the resulting polymer‐modified bitumens were studied. With the addition of different polyethylenes to bitumen, the performance of bitumen at high temperatures increased as the polymer melt‐flow index (MFI) decreased. At low temperatures, the performance of bitumen decreased as the polyethylene MFI decreased. Furthermore, a decrease in the polyethylene MFI intensified its dispersion instability. At very low MFIs, the dispersions were unstable, even under the very high shear forces applied by a double mixer. Moreover, changes in the polyethylene MFI did not improve the dispersion stability at an elevated temperature (165°C). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3183–3190, 2003  相似文献   

18.
Modification of starch for high performance elastomer   总被引:2,自引:0,他引:2  
Qing Qi  Ming Tian  Liqun Zhang  Jun Ma 《Polymer》2006,47(11):3896-3903
Because conventional filler carbon black (CB), used for elastomer reinforcement, is wholly dependent on the non-renewable petroleum resource, a novel starch modification for filler-reinforced elastomer is developed using two types of modifiers, i.e. resorcinol-formaldehyde (RF) and a silane surfactant (S). Originally used as a curing agent for rubber vulcanization, the RF is here designed to interact with starch and rubber, and thus improve the interface. The S is expected to improve the dispersion of starch particles and enhance the compatibility. The RF achieved much higher reinforcement than the S. When the starch was co-modified by both, the mechanical property improvement of styrene-butadiene rubber (SBR) was superior to that reinforced by CB. Modification mechanism was explained as that (a) the RF forms oligomer, and (b) the oligomer then undergoes condensation/crosslinking, which combines starch particles and SBR macromolecules firmly. This mechanism was subsequently proved by a suspension experiment, which refers to the experiment that measures the compatibility of modified starches with SBR in solutions of dissolved compounded SBR. Transmission electron microscopy shows that most of the modified starch particles are dispersed on nano-scale; scanning electron microscopy indicates fine morphology achieved by the modification.  相似文献   

19.
通过顺序加料法制备了一系列不同氟含量聚酰亚胺,FT-IR、1H-NMR及GPC测试结果表明,所制备的聚合物为嵌段共聚物.Lorenz和Vogel介电常数计算公式主要用于均聚物介电常数的计算,通过对上述两计算公式进行相应变形处理,使之适用于计算嵌段共聚物的理论介电常数,并将其运用到所合成的嵌段型含氟聚酰亚胺模板聚合物的介电常数计算中,计算结果显示,Lorenz和Vogel介电常数变形公式计算所得的模板聚合物的介电常数与聚合物介电常数实测值具有较好的吻合性,能够有效指导低介电常数嵌段聚酰亚胺的设计与合成.  相似文献   

20.
There is a need for clay modifiers that will not thermally degrade at elevated temperatures commonly used in polymer processing operations such as extrusion and injection molding. In this context, natural montmorillonite clay (Na-MMT) was organically modified by varying concentrations of 4,4′-bis(4″-aminophenoxy)diphenylsulfone (BAPS) using different chemical dispersion methods to yield new chemically modified clays that are relatively thermally stable at elevated temperatures compared with current commercial modified clays. This paper shows that the Na-MMT chemical modification (BAPS-MMT) was confirmed by XRD that showed a shift of diffraction peak at 2Θ = 7.3° for Na-MMT towards lower 2Θ = 5.8°. Thermogravimetric analysis of the samples showed a weight loss of organically modified clay that started at a temperature of 350 °C, corresponding to the degradation temperature of the BAPS monomer. Rheological measurements in combination with XRD data showed clearly that the quality of dispersion of BAPS-MMT type particles in R-BAPS type polyimide and oligoimides strongly depends on the clay surface modification, the specific chemical modification method used, and on the polymer molecular weight. Note that the oligoimides were specifically used as model systems to confirm our expectation of improved chemical compatibility between the BAPS-MMT and the polyimide system. This study may stimulate a better understanding of the effects of rational chemical modification methods on the quality of clay dispersion in polyimide matrices, enhancing our ability to prepare useful polyimide/clay nanocomposites with improved properties for targeted high-temperature applications where current polymer nanocomposite systems are not useable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号