首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beneficial uptake of nutrients by wetland plants is countered to some extent by nutrient release back into the aquatic environment due to vegetative die-back. This current study examined whether Leersia oryzoides, a common wetland plant, exhibits luxury uptake of nutrients from simulated farm runoff. The study also tested whether with subsequent decomposition, these nutrients are released back into the water column. When exposed to elevated (>2mg/L N and P) runoff, L. oryzoides assimilated significantly higher concentrations of nitrogen (p<0.001) and phosphorus (p<0.001) in above-ground biomass as compared to non-enriched treatments (<0.05 mg/L N and P). Subsequently, senescence of enriched above-ground biomass yielded significantly higher concentrations of phosphorus (2.19+/-0.84 mg P/L). Using L. oryzoides as our model, this study demonstrates nitrogen and phosphorus sequestration during the growing season and release of phosphorus in the winter.  相似文献   

2.
The present experiment was aimed at assessing the impact of simulated acidic precipitation (SAR) on growth, biomass accumulation and yield of two cultivars of wheat (Triticum aestivum L.), Malviya 206 and 234, varying in cuticular thickness and leaf area. Wheat cultivars were exposed to simulated rain acidified to pH 5.6 (control), 5.0, 4.5, 4.0 and 3.0 from 30 days of age, twice a week for five weeks. The plants received ambient precipitation of unknown acidity, as well as the acid rain treatments. Growth parameters such as shoot height, root length, and leaf area were reduced significantly in treated plants at different growth stages. Above and below-ground biomass also decreased significantly in the plants treated with acidic precipitation. Relative to control, the number of grains per plant and yield per m(2) declined significantly at all SAR treatments. The hypothesis that the variety with thinner cuticle and greater leaf area would be more susceptible to acidic precipitation was not supported by the present study.  相似文献   

3.
The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher soil conductivity and Ca concentration resulted from the prolonged pH 3 treatment. The results strongly support the hypothesis that the long-term growth and nutrient allocation response of conifers to acid precipitation is dependent both on the tree species and on the nutritional status of the soil.  相似文献   

4.
The impact of acidic deposition on interactions between the plant Encelia farinosa and the herbivorous beetle Trirhabda geminata (Chrysomelidae) was determined under greenhouse conditions. Acidic fogs (pH 2.75) did not significantly affect the overall foliar concentrations of water or soluble protein as compared with control fogs (pH 5.6). Nonetheless, E. farinosa foliage was altered by exposure to three 3-h acidic fogs such that growth and biomass gain by T. geminata increased by more than 30% as compared to beetles feeding on control-fogged plants. Thus, previous indications that changes in soluble proteins or water content were responsible for increased biomass gain and growth of T. geminata cannot be substantiated by this study. Additionally, changes in the plant defensive chemistry were not responsible for increased herbivore growth, as farinosin, encecalin, and euparin foliar concentrations did not vary significantly between fog treatments. Significant increases in CO2 assimilation rates of E. farinosa exposed to acidic fogs were documented at 3, 7, and 21 days following treatment, suggesting that carbohydrate-based products of increased plant metabolism may have played a role (e.g. soluble carbohydrates). However, the key factors responsible for increasing herbivore performance on acidic-fogged E. farinosa remain largely unknown.  相似文献   

5.
The effects of exposure to 40 nl litre(-1) SO2 + 40 nl litre(-1) NO2 on the reproductive biology of Polypodium interjectum (Shivas), Dryopteris affinis (Lowe) Fraser-Jenkins and Phyllitis scolopendrium (L.) Newman were investigated after 14 weeks exposure in a closed chamber fumigation system. The numbers of sori per pinna were reduced in response to SO2 and NO2 for D. affinis but were unaffected for the other species. Numbers of sporangia in sori and spore viability were reduced in P. interjectum and P. scolopendrium but not in D. affinis in response to the SO2 and NO2 treatment. Spore size was not affected by the pollution treatment. A separate experiment tested viabilities of spores collected from the three species in response to daily spraying with simulated mists at pHs of 2.5, 3.5, 4.5 and 5.6. For all three species, there was little or no spore germination in the pH 2.5 treatment and significantly reduced germination in response to the pH 3.5 as compared to the pH 4.5 and pH 5.6 treatments.  相似文献   

6.
Two crops of Brassica juncea (L.) Czern. were grown in a field experiment, at the site affected by the toxic spillage of acidic, metal-rich waste in Aznalcóllar (Seville, Spain), to study its metal accumulation and the feasibility of its use for metal phytoextraction. The effects of organic soil amendments (cow manure and mature compost) and lime on biomass production and plant survival were also assessed; plots without organic amendment and without lime were used as controls. Plots, with or without organic amendment, having pH < 5 were limed for the second crop. Soil acidification conditioned plant growth and metal accumulation. The addition of lime and the organic amendments achieved higher plant biomass production, although effects concerning metal bioavailability and accumulation were masked somewhat by pH variability with time and between and within plots. Tissue metal concentrations of B. juncea were elevated for Zn, Cu and Pb, especially in leaves of plants from plots with low pH values (maxima of 2029, 71 and 55 microg g(-1), respectively). The total uptake of heavy metals in the plants was relatively low, emphasising the problems faced when attempting to employ phytoextraction for clean-up of pluri-contaminated sites.  相似文献   

7.
Perch (Perca fluviatilis L.) were sampled soon after spawning in three small acidic lakes (pH 4.3-6.1, Al(lab) 5-106 microg litre(-1), Ca2+ 0.01-0.08 mmol litre(-1)) and in one circumneutral lake (pH 5.9-6.4, Al(lab) 4-12 microg litre(-1), Ca2+ 0.06-0.07 mmol litre(-1)) in southern Finland. Due to the delayed spawning of perch in the acidic lakes, sampling in those lakes was performed later than in the reference lake. In spite of that, the gonadosomatic index (GSI) of males in all the acidic lakes was significantly greater than in the reference lake. Of the two lakes with similar low water pH, the effects on reproduction were more prominent in the lake with higher water Al content. The plasma Ca2+ concentrations of females in the acidic lakes were significantly smaller than in the females of the reference lake. The low female:male plasma Ca2+ ratio (1.0-1.32) depicted delay of spawning. Stress in perch in acidic water was also seen in elevated blood haematocrit values, especially in females. On the other hand, a low plasma Cl- level, a common response to acidic water in salmonids, was not detected in perch in the most acidic lakes. The amount of Al accumulated in the gill epithelium was highest in the most acidified lake with high Al concentration, but was also pronounced in a lake with low pH and low Al concentration.  相似文献   

8.
Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha?1) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5–91.2 % and the concentrations of Cd and Pb in brown rice by 20.9–50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha?1) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.  相似文献   

9.
Five clones of 3-year old Norway spruce (Picea abies [L.] Karst), planted in a soil from the Bavarian Forest (pH 4.4) or a soil from the Calcareous Bavarian Alps (pH 6.9), were exposed for two successive vegetation periods, in closed environmental chambers, to a pollution treatment consisting of acidic mist (pH 3.0) plus ozone levels of 100 microg m(-3) with episodes of 130-360 microg m(-3); control trees were exposed to mist of pH 5.6 and ozone levels of 50 microg m(-3). Climatic and pollution protocols followed the diurnal and seasonal pattern characteristic for the Inner Bavarian Forest in Southern Germany, an area affected by the new-type forest decline. Biometric parameters were strongly related to clone and soil. Pollution treatment had a limited effect on only a few growth parameters. The stem diameter growth increment of two clones was reduced by pollution treatment in both soils, a third clone was affected in the acidic soil only. Two other clones were not affected at all. Stem volume increment of three clones, calculated as D(2)H, was reduced by pollution treatment in the neutral soil, a fourth clone was affected in the acidic soil only. Bud break was either delayed (two clones) or accelerated (two other clones) by treatment. Depending on soil and clone, needle yellowing was observed in previous years' needles in both treatment and control trees exposed to increased light intensities. The 'spotted' yellowing was not identical to symptoms found in forest decline areas and was most likely a consequence of nutrient deficiencies during the vegetation period preceding the experiment. The results of this experiment are discussed with regard to field observations and forest productivity. The complex pattern of growth responses resulting from interactions between air pollution, soil and genetic factors is considered to reflect different susceptibilities of trees to air pollutants.  相似文献   

10.
Norway spruce saplings [Picea abies (L.) Karst.] were exposed during four growing seasons to two different ozone treatments in open-top chambers: charcoal filtered air (CF), and non-filtered air with extra ozone (NF+, 1.4xambient concentrations). Within each ozone treatment the saplings were either kept well watered or treated with a 7-8 week period with reduced water supply each growing season. The total biomass of the trees was measured in April and September during each of the last three growing seasons. NF+ significantly reduced the total biomass accumulation of Norway spruce saplings during the fourth growing season. No interaction between ozone and reduced water supply could be detected. The magnitude of the ozone impact after 4 years of exposure was an 8% reduction of the total plant biomass and a 1.5% reduction of the RGR. The reduced water supply reduced the total biomass 29% and the RGR 12%.  相似文献   

11.
Four-year-old clonal Picea abies (L.) Karst. plants were treated with ozone (100 microm(-3) plus peaks of 130 to 360 microm(-3)) and acid mist (pH 3.0) during two vegetation periods. Pulse labelling experiments on shoots were performed with [(35)S]methionine in the second year of exposure. Extraction of soluble needle proteins in citric acid buffer of pH 2.8 revealed protein patterns on SDS polyacrylamide gels that differed from those of control needles fumigated with ambient levels of ozone (50 microg m(-3)) and mist of pH 5.6. New proteins of MW 16000 and 32000 were synthesized only in ozone-exposed needles and could not be detected in the controls.  相似文献   

12.
Various methods have been proposed to simulate natural field conditions for growing agricultural crops while controlling conditions to study specific environmental effects. This report briefly describes the use of moveable rain exclusion shelters (10.4 x 40.9 m) to study the results of the interaction of acid rain and drought stress on corn and soybean yields. The rain exclusion shelters are constructed of galvanized pipe framing and covered with polyethylene film. Movement is automated by a rain switch to protect crops from ambient rainfall and to treat them with simulated acid rain The facility simulates a real environment with respect to variables such as solar exposure, wind movement, dew formation, and insect exposure, while allowing careful control of moisture regimes. Soybeans and corn were treated with average rainfall amounts, and with one-half and one-quarter of these rainfall amounts (drought stress) at two levels of rainfall acidity, pH 5.6 and 3.0. While drought stress resulted in considerable yield reduction for Amsoy and Williams soybeans, no additional reduction in yield was observed with rainfall of pH 3.0, as compared to rainfall of approximately pH 5.6. Similar results were observed for one corn cultivar, Pioneer 3377. For one year of the study however, yield of B73 x Mo17 (corn) was reduced 3139 kg ha(-1) by the most severe drought, and an additional 1883 kg ha(-1) by acid rain of pH 3.0, as compared to the control (pH 5.6). Yield reduction from acidic rain was considerably less at full water rates, resulting in a significant pH by drought stress interaction. However, during the second year of the experiment, no pH effect or drought by pH interaction was observed for this cultivar. The reason for the difference in the two years was not identified.  相似文献   

13.
To evaluate the environmental risks of irrigating crops with treated wastewater, a study was undertaken to quantify heavy metal uptake by 4-week old buckwheat (Fagopyrum esculentum L.) plants during 18 days of irrigation with 8 different Cu and Zn solutions under two transpiration rates (TR). At 4 weeks, potted buckwheat plants were transferred into one of the two growth chambers, offering either a high or low vapour pressure deficit (VDP) for, respectively, a high or low TR. Triplicate pots received one of the 8 irrigation treatments containing one of two Zn levels (0 and 25 mg/L) combined with one of four Cu levels (0, 5, 10 and 15 mg/L). Daily TR were measured by weighing the evapo-transpired water lost from the planted pot, less was the evaporation loss measured from triplicate non-planted pots. After 0, 6, 12 and 18 days of treatment, the stems and leaves of three randomly selected plants were harvested and after 18 days, the roots were harvested to determine Cu and Zn uptake. The treatments did not affect TR in terms of dry plant mass, indicating the absence of toxic effects. Irrigating with Zn, without Cu, increased dry biomass production, whereas the lowest biomass occurred with 15 and 30 mg/L of Cu with and without 25 mg/L of Zn, respectively, because higher applications of heavy metal significantly reduced soil pH. Plant Cu and Zn uptake increased with TR. With higher levels of Cu, Zn uptake by buckwheat was significantly reduced, while Zn had a slight but non-significant impact on Cu uptake. Previously and in a study exposing wheat plants to the same conditions, Cu significantly increased Zn uptake, while Zn had a slight but insignificant negative effect on Cu uptake. The buckwheat roots contained the greatest levels of Cu and Zn, indicating their role in moderating heavy metal uptake. Also, both Cu and Zn had a synergetic effect on each other in terms of root levels, and a similar observation was made in the earlier similar experiment using wheat plants. Irrigating a buckwheat crop with treated wastewater, with more natural Cu and Zn levels of 0.08 mg/L, could be quite beneficial without endangering the quality of the crop and acidifying the soil pH. The most concentrated experimental solutions contained 300 times more Cu and Zn, to obtain measurable differences.  相似文献   

14.
Kanaly RA  Hur HG 《Chemosphere》2006,63(2):202-211
Generally, the white-rot fungus Phanerochaete chrysosporium performs its biodegradative activities in liquid culture while growing on easily utilized carbon sources such as malt- or potato-extract. However, less is known about the potential of this organism to grow directly on environmental pollutants without regard to special conditions. Growth of P. chrysosporium on a middle fraction (MF) of diesel fuel at neutral pH in mineral medium under non-ligninolytic conditions was explored. After 14 d, the GC-analyzable n-alkanes of 1000 mg l(-1)MF were reduced to background, with most biodegradation occurring by day 7 when quantified relative to the biodegradation of the internal fuel biodegradation marker, pristane. Investigations with n-hexadecane and unmodified diesel fuel further confirmed these biodegradation results. Biomass production was monitored and indicated that fungal biomass was more than 10 times less than positive controls (potato dextrose broth, PDB) but that biomass increased relative to negative controls. When P. chrysosporium was incubated with diesel fuel and PDB, fuel biodegradation was delayed for at least 4d and inhibited overall through 14 d. Experiments with P. chrysosporium growing on n-hexadecane in the presence of 1 mM 1-aminobenzotriazole (ABT), an inhibitor of the cytochrome P-450 enzyme system, resulted in inhibition of biomass production relative to positive controls implicating the utilization of this enzyme system in n-alkane metabolism. Finally, when P. chrysosporium was incubated in a non-aqueous phase liquid (NAPL) mixture of polycyclic aromatic hydrocarbons (PAHs) and MF, n-alkanes and phenanthrene were degraded in 2 weeks while anthracene, chrysene and benzo[a]pyrene were not.  相似文献   

15.
Flue gas desulfurization (FGD) by-products are created when coal is burned and SO2 is removed from the flue gases. These FGD by-products are often alkaline and contain many plant nutrients. Land application of FGD by-products is encouraged but little information is available related to plant responses and environmental impacts concerning such use. Agricultural lime (ag-lime) and several new types of FGD by-products which contain either vermiculite or perlite were applied at 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) rate to an acidic soil (Wooster silt loam). The highest FGD by-products application rate was equivalent to 75.2 Mg ha(-1). Growth of alfalfa (Medicago sativa L.) was significantly increased compared to the untreated control in the second year after treatment with yields for the 1 x LR rate of FGD approximately 7-8 times greater compared to the untreated control and 30% greater than for the commercial ag-lime. Concentrations of Mo in alfalfa were significantly increased by FGD by-products application, compared to the untreated control, while compared to the ag-lime treatment, concentrations of B increased and Ba decreased. No soil contamination problems were observed, even at the 2xLR rate, indicating these materials can be safely applied to agricultural soils.  相似文献   

16.
The effects of three soil pH's, three soil temperatures, and three soil moistures on [14C]isofenphos degradation were investigated. All three factors interacted strongly and significantly affected the persistence of isofenphos as well as the formation of the degradation products (p less than 1%). Isofenphos degradation was greatest at the higher temperatures 35 degrees C greater than 25 degrees C greater than 15 degrees C (except under alkaline pH's), medium moisture 25% greater than 30% greater than 15%, and in both alkaline (pH = 8) and acidic soils (pH = 6) compared with neutral soil (pH = 7). Isofenphos oxon formation was greatest at higher temperatures 35 degrees C compared with 25 degrees C and 15 degrees C, in acidic soil greater than neutral soil greater than alkaline soil, and under high moisture (30%) compared with the 15% and 22.5% moistures. The formation of soil-bound residues was greatest at higher temperatures 35 degrees C greater than 25 degrees C greater than 15 degrees C, higher moisture 30% compared with 15% and 22.5%, and in alkaline soil compared with neutral and acidic soils.  相似文献   

17.
This paper introduces a series of publications referring to a single 14-month laboratory study testing the hypothesis that the recent decline of Norway spruce (Picea abies (L.) Karst.) at higher elevations of the Bavarian Forest and comparable forests in medium-range mountains and in the calcareous Alps is caused by an interaction of elevated ozone concentrations, acid mist and site-specific soil (nutritional) characteristics. The effect of climatic extremes, a further important factor, was not included as an experimental variable but was considered by testing of the frost resistance of the experimental plants. Results of these individual studies are presented and discussed in the following 14 papers. Plants from six pre-selected clones of 3-year-old Norway spruce (Picea abies (L.) Karst.) were planted in April 1985 in an acidic soil from the Bavarian Forest, or a calcareous soil from the Bavarian Alps. After a transition period, plants were transferred, in July 1986, into four large environmental chambers and exposed for 14 months to an artificial climate and air pollutant regime based on long-term monitoring in the Inner Bavarian Forest. The climatic exposure protocol followed realistic seasonal and diurnal cycles (summer maximum temperature, 26 degrees C; total mean temperature, 9.8 degrees C; winter minimum, -14 degrees C; mean relative humidity, 70%; maximum irradiance, 500 W m(-2); daylength summer maximum, 17 h; winter minimum, 8 h). Plants were fumigated with ozone, generated from pure oxygen (control: annual mean of 50 microg m(-3); pollution treatment: annual mean of 100 microg m(-3) with 68 episodes of 130-360 microg m(-3) lasting 4-24 h), and background concentrations of SO(2) (22 microg m(-3)) and NO(2) (20 microg m(-3)); windspeed was set at a constant 0.6 m s(-1). Plants were additionally exposed to prolonged episodes of misting at pH 5.6 (control) and pH 3.0 (treatment). Simulation of the target climatic and fumigation conditions was highly reliable and reproducible (temperature +/-0.5 degrees C; rh+/-10%; ozone+/-10 microg m(-3);SO(2) and NO(2)+/-15 microg m(-3)).  相似文献   

18.
以养猪场废水作为研究对象,采用序列间歇式活性污泥法SBR,通过实验研究了供气量、pH、排泥量、原水稀释倍数、水力停留时间(HRT)对SBR出水水质的影响。结果表明,供气量为375 L/(min·m3)、pH为8.0,并添加排泥100 mL的操作,可使SBR处理效果明显提高,COD、磷和凯氏氮去除率最高分别可达96.37%、94.14%、99.38%。逐步降低进水稀释倍数有利于培养出处理高浓度有机养猪废水的活性污泥,可将平均COD、磷和凯氏氮含量高达9 161.24、33.41和1 502.77 mg/L的养猪废水处理至出水的490.11、5.35和17.84 mg/L。降低HRT对SBR去除率影响不大。  相似文献   

19.
Norway spruce seedlings were grown under greenhouse conditions in Rootrainers with a vermiculite-peat moss mixture under various N-regimes for 6 months. Either ammonium or nitrate was applied in loads of 100 or 800 kg N ha(-1) year(-1) to seedlings which were either non-mycorrhizal or inoculated with the mycorrhizal fungi Hebeloma crustuliniforme or Laccaria bicolor. The use of increasing N loads enhanced shoot and total biomass, whereas root/shoot ratio, number of short roots and mycorrhization decreased. A significant enhancement of the concentration and content was obvious for the element N, whereas a significant decrease was obvious for P and Zn concentrations. The use of ammonium, as opposed to nitrate, significantly enhanced the biomass and the numbers of short roots, and reduced the root/shoot ratios, but did not influence the mycorrhization. It further significantly enhanced the N concentrations in roots and shoots. Fungal inoculation with H. crustuliniforme or L. bicolor compared to non-inoculated controls significantly enhanced shoot and total biomass, but reduced root/shoot ratios. The mycorrhization further significantly enhanced N and P concentrations and contents, but reduced Mn. Overall, the mycorrhization improved the P nutrition of the seedlings independently on the applied N loads or N sources. Dose response curves using ammonium nitrate as N source with a maximum load of 1600 kg N ha(-1) year(-1) applied on seedlings associated with H. crustuliniforme revealed that the maximum growth was reached at a load of 800 kg N ha(-1) year(-1) with a simultaneous decrease of the mycorrhization. In both shoots and roots, N concentrations increased constantly with increasing N loads, while P, Ca, and Zn concentrations decreased constantly.  相似文献   

20.
Chen TY  Kao CM  Yeh TY  Chien HY  Chao AC 《Chemosphere》2006,64(3):497-502
The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号