首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Trunk musculoskeletal disorders are common among residential roofers. Addressing this problem requires a better understanding of the movements required to complete working tasks, such as affixing shingles on a sloped residential roof. We analyzed the extent to which the trunk kinematics during a shingling process are altered due to different angles of roof slope. Eight male subjects completed a kneeling shingle installation process on three differently sloped roof surfaces. The magnitude of the trunk kinematics was significantly influenced by both slope and task phase of the shingling process, depending on the metric. The results unequivocally point to roof slope and task phase as significant factors altering trunk kinematics. However, extension of the results to roofing workers should be done carefully, depending on the degree to which the study protocol represents the natural setting. Future studies on shingle installation in residential roofing should absolutely consider capturing a wider array of shingling procedures in order to encapsulate all the possible methods that are used due to the lack of a standardized procedure.  相似文献   

2.
Understanding roof-work-related risk of falls and developing low-cost, practical engineering controls for reducing this risk remain in high demand in the construction industry. This study investigated the effects of the roof work environment characteristics of surface slope, height, and visual reference on standing balance in construction workers. The 24 participants were tested in a laboratory setting at 4 slopes (0 degrees, 18 degrees, 26 degrees, and 34 degrees), 2 heights (0, 3 m), and 2 visual conditions (with and without visual references). Postural sway characteristics were calculated using center of pressure recordings from a force platform. Workers' perceptions of postural sway and instability were also evaluated. The results indicated that slope and height synergistically increased workers' standing postural instability. Workers recognized the individual destabilizing effects of slope and height but did not recognize the synergistic effect of the two. Visual references significantly reduced the destabilizing effects of height and slope. Actual and potential applications of this research include the use of temporary level work surfaces and proximal vertical reference structures as postural instability control measures during roofing work.  相似文献   

3.
《Ergonomics》2012,55(8):1304-1314
The aim of this study was to compare the biomechanical characteristics of sitting on a stool without a backrest (so as to encourage active sitting), sitting on a conventional office chair and standing in healthy participants. Thirteen healthy participants performed a keyboard-writing task during four (stable and unstable) sitting conditions and standing. Body segment positions and posture, postural sway and muscle activity of neck and trunk muscles were assessed with a motion capture system, a force plate and surface electromyography. The results showed that body segment positions, postural sway and trunk muscle activity were relatively similar for the stools without backrests compared with standing. All sitting conditions showed lower vertical upper body alignment, less anterior pelvic tilt and larger hip angles, compared with standing (p = 0.000). Unexpectedly, the muscle activity levels and total postural sway, sway velocity and sway in M/L and A/P directions were lower (p = 0.000) for the conditions that encouraged active sitting and standing, compared with the conventional office chair conditions.

Practitioner Summary: Thirteen healthy participants performed a keyboard-writing task during different sitting conditions and standing and were analysed regarding posture, postural sway and trunk muscle activity. Surprisingly, less postural sway and less muscle activity were observed during the conditions that encourage active sitting, compared with sitting on a conventional office chair.  相似文献   

4.
《Ergonomics》2012,55(3):504-512
Postural stability is critical for ensuring a safe workplace. Employees with poor stability are more prone to falls and injuries while at work. In this study, postural sway of participants in different obesity categories was evaluated while performing an assembly workstation task. The study included three workstations: those designed for the 5th, 50th and 95th percentile workers based on anthropometric data tables. Force plates were used to study the differences in postural sway in both the medial–lateral and anterior–posterior directions. The results revealed that the obese class 1 and obese class 2 groups’ anterior–posterior sway was significantly larger than that of the normal weight groups while performing assembly work tasks. Also, pace type (self-paced or time-paced) and workstation (5th, 50th and 95th percentile) significantly affected the postural sway. The postural sway was not affected by gender differences. Workstations should be designed to accommodate the increased postural sway of obese workers.  相似文献   

5.
The purpose of this laboratory study was to evaluate the possible differences in motor strategies to a new standardized low-load repetitive work task in between healthy experienced workers and a reference group. Work task event duration, i.e. working rhythm, cutting forces, surface electromyographic (EMG) activity from four shoulder muscles, postural activity, and arm and trunk movements in 3D were recorded during low-load repetitive work simulation. The experienced group showed lower EMG activity and frequency contents (P<0.05), more abducted position of the upper arm and forward flexion of the trunk prior to work simulation (P<0.05), and increased arm and trunk range of motion (P<0.05) compared with the reference group. The results highlight that experienced butchers have a different motor strategy compared with a reference group, i.e. more variable form of coordination pattern. Furthermore, the initial implementation of a possible protective motor strategy by experienced workers might be a very important prognostic factor.  相似文献   

6.
Observational studies of sitting have shown that, during spontaneous sitting, people adopt a variety of postures. Various researchers have formulated theories to explain why people adopt their sitting postures. Branton (1969) hypothesized that there is continual need for postural stability while sitting. Dempster (1955) stated that additional stability could be obtained through temporarily closing chains of body segments, or, in other words, through decreasing the number of degrees of freedom of the body. The present study elaborates on Dempster's theory. The aim of this study was to determine the influence of the degrees of freedom of the body on postural stability in sitting postures. For 21 different sitting postures, the total number of degrees of freedom was determined. Postural sway, a measure for postural stability, was determined using a 3D motion and position measurement system with ten healthy subjects. This study shows that the mean path length at the level of the second thoracic vertebra (PL0.05), a measure derived from postural sway, increases significantly (p < 0.0001) with an increase of the number of degrees of freedom of the body (DoFB). Closer examination of the data showed that a model taking into account only the degrees of freedom of the lumbar and thoracic spine and pelvis seems to be a better predictor of postural sway than the total number of degrees of freedom of the body.  相似文献   

7.
《Ergonomics》2012,55(12):2485-2503
Surveys have shown that many workers operate under conditions that require constrained standing. The aim of this study was to investigate postural adaptations in constrained standing to facilitate the development of design guidelines for standing workspaces. Standing postures were observed in six different workspaces that were designed using combinations of task distance (which was either constrained or unconstrained) and foot position (which was constrained, unconstrained or employed a footrest). Subjects at work were recorded stereopho-togrammetrically and postural variables were obtained in three dimensions. Postural adaptation to increased task distance was found to be characterized by increased trunk flexion and increased hip flexion while adaptation to close work was found to be characterized by increased neck flexion and increased thoracic kyphosis. Constrained foot position resulted in increased hip flexion accompanied by increased plantar flexion. Although use of the footrest resulted in some reduced lumbar lordosis, it increased trunk flexion and was not associated with significantly less discomfort than any of the other workspaces.  相似文献   

8.
《Ergonomics》2012,55(3):191-211
The experiment was aimed at investigating human response to different doses of whole-body vibration (WBV), at checking adaptation to repeated exposures, at further evaluating the frequency weighting, and at examining the effect of a distinct interruption of prolonged exposure. Eight male seated subjects were exposed for 3 h to sinusoidal WBV in the z-axis with the frequencies 4 Hz and 8 Hz, at a constant acceleration level of 1·0ms-2 rms,each frequency being repeated 4 times on consecutive days. Transmissibility, impedance, bioelectrical activity of trunk muscles, postural sway, performance in vigilance tasks, and the subjectively assessed psychological state, efforts, and stress experienced in performing the tasks were investigated. The transmissibility decreased during exposure time at 4 Hz and increased at 8 Hz when a controlled posture was maintained. The power-spectral density distribution and amplitude of postural sway were affected by WBV, depending on both duration and frequency. Performance data and rating data exhibited decrements and adverse effects, being greater beyond the ‘fatigue-decreased proficiency’ boundary (FDPB); adaptation and habituation were more pronounced at the FDPB dose. Generally, there were no cumulative effects. A pause for 20min did not essentially affect the reactions investigated.  相似文献   

9.
Godwin A  Eger T  Salmoni A  Grenier S  Dunn P 《Ergonomics》2007,50(2):192-207
Operators of load-haul-dump (LHD) vehicles use awkward postures that may be held statically and at extreme ranges of motion for long shift periods to spot hazards in underground mining. This study examined postural variables associated with three amounts of seat rotation intended to maximize line-of-sight during forward driving. Three different models, representing the 1st, 50th and 99th percentile male for height and weight, were positioned with appropriate hand and foot constraints in the virtual LHD cab modelled in Classic JACK v4.0. A total of 15 virtual movement strategies were developed to model the postural behaviour of typical workers and each virtual subject was tested, first with the seat in a neutral 0 degrees position and then with it rotated counter-clockwise to 20 degrees and 45 degrees . Results revealed that reductions in trunk rotation, trunk lateral bend and neck rotation were associated with the seat rotation intervention. The general relationship observed was that as seat rotation increased, view of critical visual attention locations and visible line-of-sight area increased while postural load variables decreased. For the most part, 20 degres of seat rotation was beneficial but 45 dgrees produced significantly greater changes to postural load and visible visual attention locations.  相似文献   

10.
The main objectives of this study were to identify the most problematic postures in hammering tasks performed at building construction sites through application of the computerized OWAS method, and to develop recommendations for improvement of working method and workplaces. Eighteen construction workers, with mean age of 41.6, from three construction companies participated in the field study. The hammering tasks observed during the two-month period included roof boarding, concrete form preparation, clamping support braces, assembling roof frames, roof joisting, shelter form preparation, and fixing fork clamps. Three different types of hammer, including a small Fiskar's hammer, a Fiskar's construction hammer, and a Rocket hammer, were used by the workers. Of all the observations, poor working postures were observed most frequently in roof joisting (12.4% of all observations within the task), followed by concrete form preparation (8.6%), and construction of frames for the roof (7.5%). Overall, out of 593 different postures analysed, a total of 7.8% of postures adopted by the workers during various hammering tasks were classified into OWAS categories III or IV, indicating that these postures should be corrected either soon or immediately. The computerized OWAS method for postural data analysis proved to be a very useful way to reduce postural load of dynamic hammering tasks, and allowed for efficient application of the original OWAS method.  相似文献   

11.
Postural responses were utilized as measures of the effectiveness of a wide-angle visual flow display in determining perceived spatial orientation (SO). The general experimental setup included a 150 degrees x 34 degrees wide-field display showing flight over computer-generated ground with horizon. Simulated roll maneuvers on this display induced postural sway in the observer that was registered by a head-tracker system. Two experiments with 16 participants in each investigated the effects of visual flow, display exclusions in the central visual field, and display extensions into the visual periphery. Clear vestibular and proprioceptive suppression effects were demonstrated on postural sway with the inclusion of visual flow of forward ego motion in roll maneuvers. Compared with the full view, up to 20 degrees x 20 degrees central field omission either did not reduce the effect or reduced the effect but, frequently, only moderately. Limiting the display area to 45 degrees in the horizontal dimension reduced display effectiveness significantly, whereas a 105 degrees area did not, compared with the full view. Utilizing postural responses as indications of visual display resonance with our SO mechanism, actual or potential applications of this research include the design of an interface integrating flight-adapted visual flow to counteract or reduce pilot spatial disorientation.  相似文献   

12.
ObjectiveVisually induced motion sickness (VIMS) and increased postural sway are two adverse side effects that may occur when viewing motion stimuli. However, whether these effects are elevated to a greater extent when viewing stereoscopic 3D motion stimuli, compared to 2D stimuli on a TV screen, has not been investigated under controlled circumstances. Therefore this study aimed at investigating VIMS and postural sway before, during, and directly after viewing 2D and 3D motion stimuli, on a commonly available TV screen.Method16 Participants were exposed to an aviation documentary shown in 2D and in 3D on separate occasions. Before, during, and after exposure, VIMS and postural sway were measured. VIMS was quantified by a rating scale giving a single number, and by a multi-symptom questionnaire that assessed multiple VIMS symptoms separately. Sway path length, standard deviations and short-range and long-range scaling components of the center of pressure were calculated as measures of postural sway.ResultsVIMS symptom severity, as obtained with the single rating scale, did not show a significant increase to either 2D or 3D exposure. The multi-symptom questionnaire did reveal significant increases in VIMS symptom severity to both 2D and 3D exposure. However, VIMS was not significantly more increased in case of 3D exposure compared to 2D exposure. All postural sway measures (sway path length, standard deviation in mediolateral and anteroposterior direction, as well as the short-range scaling components) increased significantly as a result of exposure. None of the postural sway measures was differentially affected to 3D as compared to 2D exposure.ConclusionViewing 3D motion stimuli did not cause more serious VIMS symptoms, compared to viewing motion stimuli in 2D. We attribute this lack of difference to the fact that the 3D effects in this documentary were optimized for viewing in a cinema, the projection on the TV-screen thus causing quarantining of the visual input. The increase in postural sway, irrespective of image type, may reflect exploratory behavior, allowing the participant to gain more information about self-orientation with respect to the virtual environment.  相似文献   

13.
Construction rebar workers face postural ergonomic hazards that can lead to work-related Lower Back Disorders (LBDs), primarily due to their prolonged awkward working postures required by the job. In a previous study, Wearable Inertial Measurement Units (WIMUs)-based Personal Protective Equipment (PPE) was developed to alert workers when their trunk inclination holding time exceeded acceptable thresholds as defined in ISO standard 11226:2000. However, subsequent field testing identified PPE was ineffective for some workers because the adopted ISO thresholds were not personalized and did not consider differences in individual’s response to postural ergonomic hazards. To address this problem, this paper introduces a worker-centric method to assist in the self-management of work-related ergonomic hazards, based on data-driven personalized healthcare intervention. Firstly, personalized information is gathered by providing each rebar ironworker a WIMU-based personalized mobile health (mHealth) system to capture their trunk inclination angle and holding time data. Then, the captured individual trunk inclination holding times are analyzed by a Gaussian-like probability density function, where abnormal holding time thresholds can be generated and updated in response to incoming trunk inclination records of an individual during work time. These abnormal holding time thresholds are then adapted to be used as personalized trunk inclination holding time recommendations for an individual worker to self-manage their working postures, based on their own trunk inclination records. The proposed worker-centric method to assist in the self-management of ergonomic postural hazards leading to LBDs was field tested on a construction site over a three-month duration. The results of the paired t-tests indicate that posture scores evaluated by the Ovako Working Posture Analysis System (OWAS) significantly decrease when the personalized recommendation is applied, while increase again when the personalized recommendation is removed. Based on data-driven personalized healthcare intervention, the results demonstrate the significant potential of the proposed worker-centric self-management method for rebar workers in preventing and controlling postural ergonomic hazards during construction rebar ironwork.  相似文献   

14.
Using psychophysics, the maximum acceptable forces for pushing have been previously developed using a magnetic particle brake (MPB) treadmill at the Liberty Mutual Research Institute for Safety. The objective of this study was to investigate the reproducibility of maximum acceptable initial and sustained forces while performing a pushing task at a frequency of 1 min−1 both on a MPB treadmill and on a high-inertia pushcart. This is important because our pushing guidelines are used extensively as a ergonomic redesign strategy and we would like the information to be as applicable as possible to cart pushing. On two separate days, nineteen female industrial workers performed a 40-min MPB treadmill pushing task and a 2-hr pushcart task, in the context of a larger experiment. During pushing, the subjects were asked to select a workload they could sustain for 8 h without “straining themselves or without becoming unusually tired, weakened, overheated or out of breath.” The results demonstrated that maximum acceptable initial and sustained forces of pushing determined on the high inertia pushcart were 0.8% and 2.5% lower than the MPB treadmill. The results also show that the maximum acceptable sustained force of the MPB treadmill task was 0.5% higher than the maximum acceptable sustained force of Snook and Ciriello (1991). Overall, the findings confirm that the existing pushing data developed by the Liberty Mutual Research Institute for Safety still provides an accurate estimate of maximal acceptable forces for the selected combination of distance and frequency of push for female industrial workers.  相似文献   

15.
The objective of this study was to determine how trunk motion characteristics (in all three planes of the trunk) change as a free dynamic lifting task becomes more asymmetric. Trunk motion characteristics included range of motion, velocity (peak and average), and acceleration. Previous studies have shown that trunk motion characteristics affect trunk strength as well as the action of the trunk musculature. These trunk motion characteristics were quantified as a function of seven task asymmetries and three task weights. The experimental task required the subject to lift materials in positions commonly seen in the workplace. The range of motion, peak velocity, average velocity, and peak acceleration in each plane of the body were documented during the tasks. Generally, trunk motion characteristics in all three planes increased with an increase in task asymmetry. However, with an increase in task weight all the sagittal plane parameters and one transverse plane parameter decreased. Models were constructed to predict trunk motion characteristics given a task asymmetry and weight. When these motion components were compared to dynamic strength estimates from previous studies it was found that dynamic asymmetric lifts could reduce available strength up to 21% of maximum static strength. The results provide new insight into factors associated with the risk of developing low back disorders.  相似文献   

16.
ObjectiveIt is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images.Method15 Participants were exposed to motion- and still images in separate sessions. Motion images consisted of video clips taken from a first person shooter game. Still images consisted of stills taken every 10 s from these same clips. Before, during, and after exposure, VIMS was rated and postural sway was measured. Sway path length, standard deviation and short- and long-term scaling components of the centre of pressure were calculated as measures of postural sway.ResultsVIMS scores obtained during and after exposure to motion images were significantly higher compared to scores obtained before, and directly after exposure to still images. The sway path length, standard deviation in anteroposterior direction and short-term scaling components in mediolateral and anteroposterior direction increased significantly during exposure to motion and still images.ConclusionIn this experiment motion- and still images caused different levels of VIMS, but comparable increases in postural sway. We assume VIMS was caused by a mismatch between visual and vestibular motion cues. The increase in sway during exposure to still images can be explained by visual effects present in still images. The lack of vection in the motion images may explain why sway was not larger when viewing these motion images as compared to viewing the still images.  相似文献   

17.
Railroad workers often perform daily work activities on irregular surfaces, specifically on ballast rock. Previous research and injury epidemiology have suggested a relationship between working on irregular surfaces and postural instability. The purpose of this study was to examine the impact of walking on ballast for an extended duration on standing balance. A total of 16 healthy adult males walked on a 7.62 m × 4.57 m (25 ft × 15 ft) walking surface of no ballast (NB) or covered with ballast (B) of an average rock size of about 1 inch for 4 h. Balance was evaluated using dynamic posturography with the NeuroCom® Equitest System? prior to experiencing the NB or B surface and again every 30 min during the 4 h of ballast exposure. Dependent variables were the sway velocity and root-mean-square (RMS) sway components in the medial–lateral and anterior–posterior directions. Repeated measures ANOVA revealed statistically significant differences in RMS and sway velocity between ballast surface conditions and across exposure times. Overall, the ballast surface condition induced greater sway in all of the dynamic posturography conditions. Walking on irregular surfaces for extended durations has a deleterious effect on balance compared to walking on a surface without ballast. These findings of changes in balance during ballast exposure suggest that working on an irregular surface may impact postural control.  相似文献   

18.
While extensive literature has characterised factors that influence the acceptable mass of ‘boxes’ during MMH tasks, less is known about these factors when moving ‘people’ in healthcare settings. This study examined factors that influence decisions/approaches employed during manual patient transfers. Sixteen nursing aides manually-transferred a standardised ‘patient’; patient mass was adjusted (using a weight vest) to determine a maximum acceptable patient mass for this task (massmax). Grip strength was the only worker characteristic significantly associated with massmax (r?=?0.48). Older worker age was associated with smaller peak trunk flexion (r?= ?0.58) and shoulder abduction (r?= ?0.59), and greater trunk axial twist (r?=?0.52). Workers emphasised that patient characteristics (e.g. physical/cognitive status) influenced their decisions when performing transfers. These findings extend previous literature by suggesting that grip strength is a useful predictor of perceived work capacity, older workers adapt protective postural strategies during patient transfers and worker-patient dynamics are crucial during this high-risk occupational task.

Practitioner Summary: This study examined manual patient transfers performed by nursing aides. Worker grip strength (but not age or size) was associated with perceptions of maximum acceptable patient mass. Kinematic changes suggested more conservative strategies used by older workers. Workers emphasised that patient characteristics substantially influenced their decisions when performing transfer tasks.  相似文献   


19.
Navigation in a 3D immersive virtual environment is known to be prone to visually induced motion sickness (VIMS). Several psychophysiological and behavioral methods have been used to measure the level of sickness of a user, among which is postural instability. This study investigates all the features that can be extracted from the body postural sway: area of the projection of the center of gravity (mainly considered in past studies) and its shape and the frequency components of the signal’s spectrum, in order to estimate and predict the occurrence of sickness in a typical virtual reality (VR) application.

After modeling and simulation of the body postural sway, an experiment on 17 subjects identified a relation between the level of sickness and the variation both in the time and frequency domains of the body sway signal. The results support and go further into detail of findings of past studies using postural instability as an efficient indicator of sickness, giving insight to better monitor VIMS in a VR application.  相似文献   


20.
《Ergonomics》2012,55(7-8):845-859
The objective of this study was to determine how trunk motion characteristics (in all three planes of the trunk) change as a free dynamic lifting task becomes more asymmetric. Trunk motion characteristics included range of motion, velocity (peak and average), and acceleration. Previous studies have shown that trunk motion characteristics affect trunk strength as well as the action of. the trunk musculature. These trunk motion characteristics were quantified as a function of seven task asymmetries and three task weights. The experimental task required the subject to lift materials in positions commonly seen in the workplace. The range of motion, peak velocity, average velocity, and peak acceleration in each plane of the body were documented during the tasks. Generally, trunk motion characteristics in all three planes increased with an increase in task asymmetry. However, with an increase in task weight all the sagittal plane parameters and one transverse plane parameter decreased. Models were constructed to predict trunk motion characteristics given a task asymmetry and weight. When these motion components were compared to dynamic strength estimates from previous studies it was found that dynamic asymmetric lifts could reduce available strength up to 21% of maximum static strength. The results provide new insight into factors associated with the risk of developing low back disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号