首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
开垦对高寒草甸土壤有机碳影响的初步研究   总被引:16,自引:0,他引:16  
在中国科学院海北高寒草甸生态系统定位站地区,选择高寒草甸开垦后形成的一年生人工草地作为研究对象,开垦年限分别为0、1、11、16和20年,利用土壤有机碳密度分组法,进行了0~40cm土层土壤有机碳及不同组分(轻组有机碳,重组有机碳)含量及随开垦年限变化关系的研究。结果表明:高寒草甸开垦后其土壤有机碳的变化主要发生在0~10cm土层,土壤中SOC、LFOC和HFOC呈下降趋势,至20年时分别下降了10.5 %、26.7%、8.1 %,主要原因为当地较为强烈的风蚀作用、耕作侵蚀和开垦加剧了表层(0 ~10cm)土壤有机质的氧化分解,表层土壤中的粗有机物质在降水淋溶作用下,在土体下部重新淀积。而0 ~40 cm土体内,SOC、LFOC和HFOC略有增加,开垦20年,他们的累积速率分别为0.08 t C·hm-2·yr-1、0.07 t C·hm-2·yr-1、0.14 t C·hm-2·yr-1。人工草地长期种植虽然没有改变高寒草甸作为碳汇的基本功能,但却大大降低了其碳汇效应,植物-土壤系统年固定碳量由未开垦前的7.38t C·hm-2·yr-1下降至6.89 t C·hm-2·yr-1。  相似文献   

2.
黄河源区高寒草地土壤有机碳储量及分布特征   总被引:14,自引:0,他引:14  
选择位于黄河源区的青海省果洛藏族自治州为研究区,利用第二次全国土壤普查所得的土壤剖面数据以及55个典型土壤剖面的地理位置、土层深度、有机质含量、面积、理化分析数据和1:50万数字化土壤类型图,在GIS的支持下利用土壤类型法对黄河源区草地土壤碳库进行了估算。结果表明,黄河源区土壤碳密度较高,平均土壤有机碳密度为29.97 kg/m2,高寒草地土壤有机碳库主要由高山草甸土和高山草原土的有机碳库构成,研究区土壤有机碳总储量达15×108tC。区域草地土壤有机碳密度及储量呈明显的水平和垂直分异规律。  相似文献   

3.
青藏高原东缘红原地区三种不同草甸土壤活性碳特征   总被引:2,自引:0,他引:2  
张伟  张宏 《山地学报》2008,26(2):205-211
采用野外调查和室内分析结合的方法研究了青藏高原东部高寒草甸土壤活性碳含量特征,结果表明,在选取的浅丘山地灌丛、浅丘山地草甸、以及丘前阶地草甸三块样地中,活性碳沿土壤剖面整体呈下降趋势,中间有不同程度的波动.浅丘山地草甸土壤活性碳含量变化于8.19~17.41 mg,/g,浅丘山地灌丛变化于8.66~17.62mg/,g,丘前阶地草甸变化于9.63~17.68 me/g,浅丘山地草甸变化幅度为52.96%>浅丘山地灌丛(50.85%)>丘前阶地草甸(45.53%),三者间差异不显著.有机碳活度最大值都不是出现在最表层,浅丘山地草甸最高值为,0.395,出现在10~15 cm;浅丘山地灌丛和丘前阶地草甸最高值分别为0.407和0.435,出现在25~30 cm.  相似文献   

4.
青藏高原高寒草甸的时空变化特征   总被引:10,自引:0,他引:10  
本文首先用比较地理学的观点分析了青藏高原高寒草甸与其相邻景观之间的连续性与间断性;然后从高寒草甸上下限垂直分布的特征出发,半定量地阐明了上下限分布特征的原因以及决定上下限分布的主导因素;最后从不同的时间尺度出发,探讨了高寒草甸生态系统的动态变化特征。  相似文献   

5.
甘肃河西山地土壤有机碳储量及分布特征   总被引:1,自引:0,他引:1  
山地土壤具有强异质性和较高的碳密度,研究山地土壤有机碳的储量、空间分布特征和影响因素,对理解未来气候变化情景下该区土壤碳-大气反馈具有重要意义。河西山地地形复杂,水热梯度明显,是研究土壤有机碳空间格局的理想区域。利用河西山地126个土壤剖面数据,分析了0~100 cm土壤有机碳的储量、空间分布特征及其与环境因素的关系。结果表明:河西山地0~100 cm土壤有机碳密度均值15.04±7.24 kg·m^-2,区域土壤有机碳储量1.37±0.66 Pg,其中50%储存在高寒草甸和亚高山灌丛草甸。研究区土壤有机碳密度从高到低依次为亚高山灌丛草甸(41.15±18.47 kg·m^-2)、山地草甸草原(40.26±9.59 kg·m^-2)、山地森林(34.57±14.52 kg·m^-2)、高寒草甸(29.19±14.58 kg·m^-2)、山地草原(19.28±11.33 kg·m^-2)、荒漠草原(9.83±4.14 kg·m^-2)、高寒草原(8.59±2.47 kg·m^-2)、高寒荒漠(5.89±3.18 kg·m^-2)、草原化荒漠(5.16±3.06 kg·m^-2)、温带荒漠(5.00±3.35 kg·m^-2)。土壤有机碳的空间分布与地形和气候因子显著相关。土壤有机碳密度随着海拔的升高呈现出先增加后减少的趋势,阴坡土壤有机碳密度显著高于阳坡和半阴坡。土壤有机碳密度随年平均降水量增多而增多,随年平均温度的升高呈现出先增加后减少的趋势。  相似文献   

6.
青藏高原高寒草甸层带   总被引:1,自引:1,他引:1  
高寒草甸是高原上适合高寒草甸形成的气候层带在其下垫面上“投影”的产物 .在垂直带中 ,高寒草甸分布的上下限是上述气候层带上下限的指示 .高寒草甸下限分布趋势面与高原基面趋势面相交的闭合曲线区是高寒草甸在高原上水平分布的范围  相似文献   

7.
青藏高原高寒草原土壤活性有机碳的分布特征   总被引:6,自引:0,他引:6  
利用36个样点数据,分析了青藏高原高寒草原土壤活性有机碳(SAOC)分布特征.结果表明:(1)在水平方向上,SAOC含量呈现出东南高、西北低的总体态势和斑块状交错分布的格局,高值区主要集中在藏北高原腹地和喜马拉雅北麓湖盆区,不同草地型和自然地带SAOC含量差异显著;(2)在垂直方向上,不同草地型和自然地带0~40cm剖面SAOC含量分布状况,均可分为由高到低型、由低到高型和低-高-低型3个类型,表土层(0~10cm)与底土层(30~40cm)SAOC含量差异显著;(3)基于回归模型的标准系数法,分析了气候因子对高寒草原SAOC含量的影响程度,指出降水对高寒草原SAOC含量的贡献大于气温.  相似文献   

8.
王秀红 《自然资源》1997,17(5):71-77
本文用数学模式研究了青藏高原高寒草甸上下限的分布特征。  相似文献   

9.
对念青唐古拉山东南坡高寒草原生态系统表层(0~20 cm)土壤有机碳分布特征进行研究,结果表明:有机碳密度平均为5.002 8±1.103 7 kg/m2,变异系数21.96%;在拔4421~4598 m内,随海拔升高表现增加→减少→增加的分布特征;与地上及10~20 cm土层生物量、20~30 cm含水量、土壤有机质、速效N、全N和全P含量呈显著正相关,与20~40 cm容重呈显著负相关。影响其的第1因子是植被盖度、地上生物量、20~30 cm地下生物量和20~30 cm含水量,第2因子是0~20 cm和20~40 cm容重及全P量,第3因子是有机质含量和速效N含量,第4因子是0~10 cm地下生物量,累计贡献率92.83%。  相似文献   

10.
土壤碳氮是高寒植被响应多年冻土区生态环境变化的重要营养和能源物质,但对其调查仍以生长季的单次采样为主,缺乏对其他季节的研究,这对于准确把握多年冻土区土壤碳氮含量及储量评估存在明显局限性。为此,本研究以青藏高原东北缘祁连山西段疏勒河源多年冻土区高寒草甸为对象,对0—50 cm土层土壤有机碳(Soil Organic Carbon, SOC)、全氮(Total Nitrogen, TN)含量及其比值(C/N)的剖面分布和季节变化及其影响因素进行分析。结果表明:(1)SOC、TN剖面分布规律一致,0—10 cm土层均显著高于10—50 cm各层(P<0.05),0—50 cm深度仅秋季逐渐下降,而春夏冬季0—30 cm递减。(2)SOC、TN含量存在季节变化,SOC表现为夏季>冬季>春季>秋季,TN表现为春秋冬季含量一致,夏季略低。(3)C/N季节变化显著,夏季显著最高,秋季显著最低(P<0.05)。(4)土壤含水量和生物量是影响SOC、TN及C/N剖面分布和季节变化的关键因素。(5)夏季土壤碳氮密度均高于全年平均。可见,仅单一节点(生长季为主)调查以表征全年土壤碳氮储量存在高估趋势。  相似文献   

11.
西藏当雄高寒草甸碳通量定位观测站小气候的基本特征   总被引:1,自引:0,他引:1  
分析了西藏当雄高寒草甸碳通量站4 a高密度小气候观测资料的净辐射、光合有效辐射,气温的年变化和日变化的规律,绝对湿度、相对湿度、风、大气压、土壤温度及湿度、土壤热通量的年变化规律.该地区具有明显的高原大陆性气候特征,光照强、日照长,太阳辐射和光合有效辐强;气温年较差小,日较差大;空气湿度小,较干燥,雨季和旱季分明,降水集中强度小;气压低,有常风;土壤温度年变化较小,土壤湿度和降水有明显的对应关系,降水节律是土壤湿度的决定因素.  相似文献   

12.
137Cs示踪法研究青藏高原草甸土的土壤侵蚀   总被引:5,自引:0,他引:5  
运用137Cs示踪法对青藏高原高寒草甸典型的两个小流域的土壤侵蚀进行了研究,结果表明:高寒草甸植被区的土壤137Cs在土壤剖面中呈指数型分布,分布深度一般在20cm左右;坡顶部由于风蚀、冻融侵蚀和水蚀较强,致使侵蚀强于下部,除坡顶部外其他坡位侵蚀强度都符合坡上部<坡中部<坡下部的规律;高寒草甸植被覆盖度与土壤侵蚀强度呈显著的负相关关系(p<0.01),土壤平均侵蚀模数随植被覆盖度的增加呈线性降低的趋势,相关系数R2达到0.997以上。高寒草甸退化程度越高,土壤侵蚀越强。退化较强的草甸区的平均侵蚀模数是退化较弱区的2.23倍,最大侵蚀模数可达2960.22t/(km2.a)。  相似文献   

13.
荒漠土壤微生物碳垂直分布规律对有机碳库的表征作用   总被引:1,自引:1,他引:0  
以古尔班通古特沙漠南缘原始盐漠为研究对象,测定不同深度的土壤有机碳和土壤微生物碳含量,以分析它们之间的响应关系。结果表明:(1)在土壤垂直剖面上,土壤微生物碳(SMC)含量与有机碳(SOC)含量呈现极显著正线性相关(R2=0.63,p=0.0003)。(2)SMC出现了2个明显的改变界面(20 cm,80 cm),0~20、20~80、80~500 cm值分别为:2.24~3.06、0.19~0.72、0.0017~0.0097 mg·kg-1;0~20 cm和20~80 cm的SMC差异极显著(p<0.0001),20~80 cm和80~500 cm的SMC差异显著(p<0.05)。(3)对应于SMC的土壤层划分,SOC在0~20 cm、20~80 cm和80~500 cm同样具有一定的分层性。(4)我们把具有不同微生物活性的有机碳层分别定义为活性、惰性、稳定性有机碳库,土壤垂直剖面上微生物碳的分布很好地表征了土壤中活性、惰性、稳定性有机碳库的分布;通过对这3种碳库所在土层进行合理划分,可以定量分析土壤中3种有机碳库的储量。  相似文献   

14.
海南岛土壤有机碳空间分布特征及储量   总被引:1,自引:0,他引:1  
利用2005年海南岛生态地球化学调查获得的8713件表层土壤和2197件深层土壤样品,计算分析海南岛土壤有机碳的空间分布特征,结果显示:0~20 cm、0~100 cm、0~180 cm 3个深度的土壤有机碳密度分别为2.86、9.48、13.72 kg/m2,与国内其他典型地区相比,几乎处于最低水平.区域土壤有机碳密度图显示,海南岛土壤有机碳的分布与地貌类型关系密切,高值区分布在山地、丘陵、火山岩台地等地区,其次是平原区,最低为滨海地区.统计显示,土地利用类型、土类不同,土壤有机碳密度差异明显,不同地类土壤有机碳密度:园地>林地>其他土地>耕地,土壤有机碳主要贮存在林地和耕地中;不同土类土壤有机碳密度:黄壤>赤红壤>砖红壤>水稻土>燥红土,土壤有机碳主要贮存在砖红壤、赤红壤和水稻土中;0~180 cm土壤有机碳库储量为478.13 Mt.  相似文献   

15.
16.
中国土壤有机碳库及空间分布特征分析   总被引:146,自引:7,他引:146  
土壤有机碳库是陆地碳库的主要组成部分 ,在陆地碳循环研究中有着重要的作用。根据中国第二次土壤普查实测 2 4 73个典型土壤剖面的理化性质 ,以及土壤各类型分布面积 ,估算中国土壤有机碳库的储量约为 92 4 .1 8× 1 0 8t,平均碳密度为 1 0 .53kg/m2 ,表明中国土壤是一个巨大的碳库。其空间分布总体规律上表现为 :东部地区大致是随纬度的增加而递增 ,北部地区呈现随经度减小而递减的趋势 ,西部地区则呈现随纬度减小而增加的趋势。  相似文献   

17.
澜沧江上游德钦县亚高山、高山草地群落类型及其特点   总被引:1,自引:0,他引:1  
摘要:采用样方调查方法获得94个草地群落样方,对澜沧江上游德钦县亚高山、高山草地群落类型及其特点进行了初步分析。结果表明,该县亚高山、高山草地群落类型存在20个类型。在放牧干扰下,大多数群落类型处于退化状态,相互之间存在明显的群落替代关系;调查发现群落中每平方米内平均含8种草本植物,平均盖度62.4%,地上平均生物量是4859kg/hm^2,平均可食率为61.5%;鸢尾群落、牛旁群落和小狼毒群落是草地严重退化后形成的典型有毒害群落类型;长期的高强度放牧虽然增加了群落类型多样性,但减少了群落内物种多样性。总体而言,长期的放牧干扰降低了德钦草地的生物多样性的质量及其生态服务功能,导致草地生态系统的非持续发展。  相似文献   

18.
采集青藏高原高寒草甸15种优势植物进行室内沙培实验,利用静态箱-气相色谱法测定其甲烷通量,以确定其对大气甲烷的源汇效应;对植物体实施横切、纵切处理,研究植物甲烷排放的机制.结果显示:8种植物为大气甲烷的源,多为草本植物,7种为大气甲烷的汇,多数灌木植物吸收甲烷;横切、纵切处理对于植物甲烷释放速率的影响显著(p<0.05),释放甲烷的植物中5种植物纵切后甲烷释放速率增加,增幅10.9%~ 244.06%,6种植物横切后甲烷释放速率增加,增幅27.04%~37.44%,灌丛植物在横切、纵切处理后甲烷通量都呈降低的趋势;对植物纵切处理后甲烷释放速率显著高于未处理与横切处理后植物甲烷释放速率,推测是由于几种处理间对于植物维管束处的气腔破坏程度不同造成的;温度对于植物的甲烷行为影响显著(p<0.05),随着温度的升高植物甲烷的源/汇效应均呈现增加趋势,甲烷源植物Q10=1.75,甲烷汇植物Q10 =1.44.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号