首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
孔秀  刘耀驰 《化学通报》2015,78(12):1138-1144
通过静态试验研究了土壤对正丁基黄原酸钾的吸附性能和影响因素,以及正丁基黄原酸钾-铅复合污染体系的吸附平衡与动力学特征。结果表明,土壤对正丁基黄原酸钾的吸附过程遵循Lagergren二级动力学模型,等温吸附可用Freundlich模型拟合,提高温度有利于吸附,土壤对正丁基黄原酸钾的吸附属于内扩散控制过程;土壤吸附正丁基黄原酸钾最佳p H范围为5~9,p H较低时正丁基黄原酸钾易被酸解,碱性环境(p H10)将抑制土壤对正丁基黄原酸钾的吸附;正丁基黄原酸钾与Pb2+形成难溶络合物而严重影响了Pb2+在土壤中的吸附,使Pb2+的吸附速率常数由38.319g/(mg·min)提高到70.350g/(mg·min),平衡吸附量(qe)由1.909mg/g降低到1.385mg/g,且影响程度随着Pb2+浓度的升高而减弱。  相似文献   

2.
滴定法测定碱金属黄原酸盐   总被引:1,自引:0,他引:1  
在碱性条件下,CS2和醇反应所生成的有机盐总称黄原酸盐。黄原酸钾(钠)又称乙基黄原酸钾(钠)、乙基二硫代碳酸钾(钠),为白色或浅黄色固体粉末,有刺激性气味,易溶于水、乙醇中。工业上用作橡胶硫化促进剂,农业上用于作物的干燥剂。黄原酸钠还可作为医用防腐剂及杀菌剂,黄原酸钾是医药甲砜霉素的中间体,也用作分析试剂。  相似文献   

3.
用Cu(NO3)2·3H2O为原料,25%氨水为配位剂,用NaOH做沉淀剂,在不同醇-氨水体系中用配位沉淀法制备粒径可调的纳米CuO。通过热重差热分析法(TG-DTA)分析前驱体的组成并得到煅烧最佳温度。在制备前驱体过程中,探究了反应体系溶剂分别为乙醇、正丁醇、正辛醇时对产物粒径的影响,实验结果表明:随着醇溶剂中碳链的增长,得到纳米CuO的比表面积依次增大,粒度依次减小。将纳米CuO与硫单质混合,在通入氮气的管式炉中以200 ℃加热90 min,可以得到表面硫化的CuO(CuO/CuS),利用X-射线粉末衍射(XRD)和红外吸收光谱(FT-IR)对纳米CuO和CuO/CuS进行表征。最后将纳米CuO和CuO/CuS分别对乙基黄原酸钾进行吸附,结果表明CuO/CuS对乙基黄原酸钾吸附能力明显增强,进而证明氧化铜表面发生了硫化。  相似文献   

4.
用Cu(NO3)2.3H2O为原料,25%氨水为配位剂,用NaOH做沉淀剂,在不同醇-氨水体系中用配位沉淀法制备粒径可调的纳米CuO。通过热重差热分析法(TG-DTA)分析前驱体的组成并得到煅烧最佳温度。在制备前驱体过程中,探究了反应体系溶剂分别为乙醇、正丁醇、正辛醇时对产物粒径的影响,实验结果表明:随着醇溶剂中碳链的增长,得到纳米CuO的比表面积依次增大,粒度依次减小。将纳米CuO与硫单质混合,在通入氮气的管式炉中以200℃加热90 min,可以得到表面硫化的CuO(CuO/CuS),利用X-射线粉末衍射(XRD)和红外吸收光谱(FT-IR)对纳米CuO和CuO/CuS进行表征。最后将纳米CuO和CuO/CuS分别对乙基黄原酸钾进行吸附,结果表明CuO/CuS对乙基黄原酸钾吸附能力明显增强,进而证明氧化铜表面发生了硫化。  相似文献   

5.
用酒石酸铵掩蔽岩石矿物中的Fe、Al、Ti、Ca、Mg等元素,在pN8.5以乙基黄原酸钾-甲基异丁酮萃取,用同一份有机相火焰原子吸收法测定岩石矿物中微Cu、Pb、Co、Ni、Ag、Cd。本法有较高的灵敏度和准确度,在没有用氘灯或塞曼效应扣背景的原子吸收分光光度仪上测定,能得到满意的结果。适用于化探试样和硅酸盐、铁矿等岩石矿物分析。曾用此法测定GSD-1-GSD-8八个化探标样,质量均符合规定要求。  相似文献   

6.
采用ONIOM (B3LYP/6-31G(d,p):UFF)分层计算的方法, 研究了HZSM-5 分子筛上乙醇和异丁烯合成乙基叔丁基醚(ETBE)的反应机理. 通过反应物在HZSM-5 分子筛上吸附性质的研究发现, 乙醇与分子筛酸性位相互作用形成氢键, 而异丁烯则作用在Brönsted 酸位上形成π配位吸附. 确定反应物吸附位置后, 进一步探索反应机理, 结果表明: HZSM-5分子筛上乙醇和异丁烯合成乙基叔丁基醚的反应为协同反应, 并且, 反应物吸附顺序的不同对反应过程存在一定的影响. ETBE合成反应的最优途径以反应物同时吸附形成的复合物作为起点. 在反应过程中, 形成π配位的H原子向异丁烯分子中不饱和双键的端位C原子靠近, 被吸附的乙醇分子中的O原子向异丁烯双键中的另一个C原子靠近, 直到形成C-O键, 生成ETBE. 这一过程中, 原有的质子H加成到异丁烯的端基C上形成C-H键, 而原醇羟基中的H和B酸位附近的O原子作用形成新的酸性位. 相应的协同反应的最低的反应势垒为25.14 kJ·mol-1.  相似文献   

7.
正黄原酸盐(ROCSSNa)俗称黄药,是选矿工业中良好的泡沫浮选捕收剂。黄药可伤及人畜的神经系统和肝脏器官,对造血系统存在不良影响。根据烷烃取代基的不同,常用的黄原酸盐包括乙基黄原酸盐(EtX)、丁基黄原酸盐(BuX)、异丙基黄原酸盐(IpX)、异丁基黄原酸盐(IbX)和戊基黄原酸盐(AmX)等。黄原酸盐也是良好的螯合剂,可用于分析铜、镍和铅等金属元素[1-3]。其中,乙基钠黄原酸  相似文献   

8.
淀粉共原酸酯吸附性能研究   总被引:11,自引:0,他引:11  
本文研究了淀粉黄原酸酯对重金属离子吸附性能的影响因素。结果表明淀粉黄原酸酯的制备条件、用量及重金属离子的浓度对吸附性能有重要影响;吸附剂的吸附容量可达到4mmol/g左右。  相似文献   

9.
为提高活性炭(GAC)的吸附性能,采用氢氧化镁对活性炭进行改性,制得经济高效的改性活性炭材料。利用扫描电镜、XRD对改性活性炭进行表征;通过实验确定改性活性炭的最佳制备条件:氯化镁浓度为1.0 mol·L~(-1),氢氧化钠浓度为0.5 mol·L~(-1),氢氧化钠浸泡活性炭的温度20℃;吸附酸性品红吸附时间为150 min时,改性活性炭对酸性品红的吸附量为6.16 mg·g~(-1),而原活性炭吸附量为4.12 mg·g~(-1);热力学吉布斯自由能ΔH~00和焓变ΔH~00,说明该吸附过程是吸热和自发进行的,同时考察了吸附时间、溶液pH值、吸附剂投加量和温度等因素对吸附效果的影响。  相似文献   

10.
为提高活性炭(GAC)的吸附性能,采用氢氧化镁对活性炭进行改性,制得经济高效的改性活性炭材料。利用扫描电镜、XRD对改性活性炭进行表征;通过实验确定改性活性炭的最佳制备条件:氯化镁浓度为1.0mol·L~(-1),氢氧化钠浓度为0.5 mol·L~(-1),氢氧化钠浸泡活性炭的温度20℃;吸附酸性品红吸附时间为150min时,改性活性炭对酸性品红的吸附量为6.16 mg·g~(-1),而原活性炭吸附量为4.12 mg·g~(-1);热力学吉布斯自由能ΔH~00和焓变ΔH~00,说明该吸附过程是吸热和自发进行的。同时考察了吸附时间、溶液pH值、吸附剂投加量和温度等因素对吸附效果的影响。  相似文献   

11.
<正>偏钒酸钾作为化学试剂、催化剂、催干剂和媒染剂等广泛应用于釉料、化工触媒和高级陶瓷制品等领域,其中钠的含量是一项重要的质量指标。目前测定钠含量的方法有原子吸收光谱法[1-7]和电感耦合等离子体原子发射光谱法(ICP-AES)[8]等。因高含量的钾、钒存在影响偏钒酸钾中钠的测定,试验采用基体匹配方法消除其干扰。本工作针对高钒高钾的产品,建立了火焰原子吸收光谱法测定偏钒酸钾中钠含量的方法。  相似文献   

12.
活性炭是我们生活中常用的吸附剂,此次研究以外墙保温板残料为碳源制备了活性炭,并考察了所制备的活性炭对苯酚的吸附性能;针对吸附时间、吸附温度、p H、浓度等因素对苯酚吸附的影响,确定了吸附工艺参数:吸附苯酚最优条件为吸附时间90min,温度40℃,p H为4,浓度为0.78mg·m L~(-1),吸附量606.88 mg·g~(-1)。动力学分析:苯酚在外墙保温板残料基活性炭上的吸附符合内分子扩散模型,活化能为Ea=24.5kJ·mol~(-1),苯酚在外墙保温板残料基活性炭上的吸附符合Temkin模型;热力学分析得:在温度低于40℃时,ΔG(0,ΔH=15.761kJ·mol~(-1)(0,ΔS=141.7J·mol~(-1)/K(0,活性炭对苯酚的吸附是自发的吸热过程;混乱度增加,即活性炭更容易吸附苯酚。由此可见以外墙保温板残料为碳源制备的活性炭可以处理应急被苯酚污染的水。  相似文献   

13.
本工作测定了四次乙基五胺-环氧氯丙烷阴离子交换树脂对酸的交换吸附速率,包括: 1.用不同配料比合成的树脂,对3,5-二硝基苯甲酸的交换吸附; 2.用一定配料比不同粒度的330对乙酸的交换吸附; 3.用一定配料比的330对数种酸(甲酸、乙酸、己酸、盐酸及3.5-二硝基苯甲酸)的交 换吸附; 4.弱碱330、叔胺化330、季铵化330及强碱201对3,5-二硝基苯甲酸的交换吸附; 5.数种弱碱330对3,5-二硝基苯甲酸的交换吸附。 本文还比较了两种测试交换吸附速度的方法:连续取样法及分批法.实验表明,当被交换吸附的酸浓度若维持在0.032N左右时两种方法所得到的曲线基本上是一致的。  相似文献   

14.
以壳聚糖为原料,通过交联和黄原酸化反应制备出交联黄原酸壳聚糖,采用FT-IR和XRD表征了其结构,并探讨壳聚糖及交联黄原酸壳聚糖对Pb2+的吸附性能。研究了初始溶液pH值、温度以及吸附时间等因素对Pb2+吸附量的影响。结果表明,在Pb2+起始浓度0.01 M,起始溶液pH=5,室温25℃吸附2h条件下,壳聚糖和交联黄原酸壳聚糖对铅离子的吸附量分别为126.8 mg/g和238.9 mg/g,交联黄原酸壳聚糖吸附能力为壳聚糖的1.89倍。  相似文献   

15.
以壳聚糖为原料,先合成O-羧甲基壳聚糖,再和二硫化碳反应制备出新型黄原酸壳聚糖,使用元素分析、FT-IR、UV和TG对其结构进行表征。比较了壳聚糖、O-羧甲基壳聚糖和黄原酸壳聚糖对铅离子的吸附能力,并研究黄原酸壳聚糖对水溶液中铅离子的吸附性能,探讨了铅离子溶液的pH值对吸附的影响和黄原酸壳聚糖对铅离子的吸附热力学。结果表明,黄原酸壳聚糖对铅离子吸附量是壳聚糖的8.37倍,平衡吸附量可达600.6mg/g。XPS表明,吸附过程主要通过吸附剂中的氨基、羧基和黄原酸基团与铅离子发生作用完成。  相似文献   

16.
旋光活性的O-乙基-O-苯基-O-(1-甲基-2-乙氧羰基)乙烯基硫代磷酸酯Z,E异构体的立体专一性合成是通过旋光活性的O-乙基-O-苯基硫代磷酰氯与乙酰乙酸乙酯在不同反应条件下实现的.以甲苯-二氧六环为溶剂,在金属钠存在下得到100%的Z体;而用叔丁醇钾为缚酸剂,在二甲亚砜中反应时得到95%以上的E体,再通过硅胶柱层析分离可得到100%的E体.无论是生成E体还是Z体,此反应均为磷原子构型翻转.  相似文献   

17.
针对活性炭吸附VOCs过程的安全性问题进行了研究,采用咪唑-脯氨酸离子液体对活性炭进行改性,优化吸附性能。以典型的甲苯气体为例,讨论了改性前后活性炭结构的变化对甲苯吸附性能的影响,并探索了改性前后活性炭的热反应安全性。研究结果表明:咪唑-脯氨酸改性活性炭表面的孔隙数量增多、孔径变大、含氧官能团增加、比表面积和体积增大。改性活性炭对甲苯的吸附量78 mg·g~(-1)是改性前活性炭吸附量36.03 mg·g~(-1)的2.17倍,吸附能力明显提升;粒径为51μm和111μm的两种改性活性炭的自燃温度比未改性活性炭的自燃温度分别提高了22.4℃和19.4℃且到达自燃温度所需时间分别延长了11.17 h和0.75 h。改性活性炭所需活化能为47.32kJ·moL~(-1),热稳定性优于未改性活性炭。  相似文献   

18.
朱卫红  王超  张霖琳  袁懋 《色谱》2023,(4):339-347
建立了超高效液相色谱-串联质谱法测定水中乙基黄原酸、异丙基黄原酸、正丁基黄原酸、异丁基黄原酸和戊基黄原酸等5种黄原酸的分析方法。水样经0.22μm亲水聚四氟乙烯(PTFE)滤膜过滤后直接进样分析,采用Waters Acquity UPLC BEH C18色谱柱(100 mm×2.1 mm, 1.7μm)进行分离,以氨水溶液(pH 11)-乙腈(9∶1, v/v)作为流动相进行等度洗脱,多反应监测负离子模式测定,内标法定量。通过将流动相氨水溶液的pH值增加到11,可有效抑制黄原酸色谱峰的拖尾现象,从而改善分离效果,并使丁基黄原酸同分异构体得到分离。水样保存条件确定为pH 11、4℃避光保存,在该条件下保存期限可延长至8 d。5种黄原酸在0.25~100μg/L范围内线性关系良好,方法检出限为0.03~0.04μg/L,日内精密度和日间精密度分别为1.3%~2.1%和3.3%~4.1%。低、中、高加标水平(1.00、20.0、80.0μg/L)下的回收率分别为96.9%~133%、100%~107%和104%~112%,对应的相对标准偏差分别为2.1%~3.0%、0....  相似文献   

19.
本文研究了二(乙基黄原酸基)金属配合物为中性载体的阴离子选择性电极,其中二(乙基黄原酸基)钴(Ⅱ)对碘离子有高的选择性, 且电极呈现反Hofmeister行为, 其选择次序是: I^->SCN^->NO2^->Br^->ClO4^->SO4^2^->NO3^->Cl^-, 采用交流阻抗和光谱分析技术研究了电极的响应机理, 并将电极用于药品分析,结果令人满意。  相似文献   

20.
利用单因素试验对黄原脂棉吸附溶液中Pb~(2+)的条件进行了实验优化,结果显示:在pH=5.0的溶液体系中,于温度20℃,振荡吸附15min,黄原脂棉对Pb~(2+)的吸附效果最佳;吸附的Pb~(2+)用6.0mL 3.0mol/L HCl,于40℃下解吸15min,可将Pb~(2+)从黄原酯棉上完全洗脱。采用石墨炉原子吸收光谱法,将该条件用于测定咸味食品中痕量Pb~(2+),结果表明:黄原脂棉能有效消除盐类基体给测定Pb~(2+)带来的干扰,方法的相对标准偏差为1.56%~2.31%(n=6);回收率为97.0%~102.7%;检出限为0.047mg/kg。本法灵敏、准确、可靠,可用于咸味食品中痕量Pb~(2+)的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号