首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study examines the peristaltic flow of a PTT nanofluid in a diverging tube. This is the first article on the PTT peristaltic flow in nanofluid. The governing equations for PTT nanofluid are modelled in a cylindrical coordinates system. The flow is investigated in a wave frame of reference moving with velocity of the wave c1. Temperature and nanoparticle equations are coupled so the homotopy perturbation method is used to calculate the solutions of temperature and nanoparticle equations, while exact solutions have been evaluated for the velocity profile and pressure gradient. The solutions analyze the Brownian motion number Nb, thermophoresis number Nt, local temperature Grashof number Br, and local nanoparticle Grashof number Gr. The effects of various physical parameters of the model are investigated and discussed. It is observed that the pressure rise decreases with the increase in thermophoresis number Nt. Increases are noted in the Brownian motion parameter Nb and the thermophoresis parameter Nt as the temperature profile increases. Streamlines have been plotted at the end of the article. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20386  相似文献   

2.
In this study, we deal with the problem of a steady two‐dimensional magnetohydrodynamic (MHD) flow of a dusty fluid over a stretching hollow cylinder. Unlike the commonly employed thermal conditions of constant temperature or constant heat flux, the present study uses a convective heating boundary condition. The multi‐step differential transform method (multi‐step DTM), one of the most effective methods, is employed to find an approximate solution of the system of highly nonlinear differential equations governing the problem. Comparisons are made between the results of the proposed method and the numerical method in solving this problem and excellent agreement has been observed. The influence of important parameters on the flow field and heat transfer characteristics are presented and discussed in detail. The results show that both the thermal boundary layer thickness and the heat transfer rate at the wall increases with increasing Biot number Bi, while it has no effect on the skin friction coefficient. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 221–232, 2014; Published online 30 August 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21073  相似文献   

3.
This article studies the effect of thermal radiation on a MHD free convection flow of a nanofluid bounded by a semi‐infinite vertical plate with a constant heat source in a rotating frame of reference. The plate is assumed to oscillate in time with constant frequency so that the solutions of the boundary layer are the same oscillatory type. The dimensionless governing equations for this investigation are solved analytically using the regular perturbation method. The effect of various important parameters entering into the problem on velocity and temperature fields within the boundary layer are discussed for three different water‐based nanofluids such as Cu, Al2O3, and TiO2 with the help of graphs. The predicted results clearly indicate that the presence of nanoparticles in the base fluid enhances the heat transfer process significantly. The present work shows the need for immediate attention in next‐generation solar film collectors, heat‐exchanger technology, material processing exploiting vertical surface, geothermal energy storage, and all those processes which are greatly exaggerated by heat‐enhancement concepts. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21101  相似文献   

4.
The effect of heat and mass transfer in a MHD non‐Darcian flow of a micropolar fluid over an unsteady stretching sheet with thermophoresis and non‐uniform heat source/sink is discussed. The fluid is electrically conducting in the presence of a uniform applied magnetic field. The arising nonlinear problem is solved by the Keller box method. The effects of various physical parameters on skin friction, local Nusselt number, and Sherwood number are presented graphically and in tabular form. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21018  相似文献   

5.
In the present study, the effect of inclination on mixed convection heat transfer and fluid flow in a lid‐driven cavity with a wavy wall is investigated using the lattice Boltzmann method. The double‐population approach with second‐order accuracy at velocity and temperature fields is used to simulate the curved boundary in the lattice Boltzmann method. The problem is investigated for different Richardson numbers (0.1 ≤ Ri ≤ 10), curve amplitudes (0.05 ≤ A ≤ 0.25), and inclination angles (0 ≤ θ ≤ 180) when the Reynolds number is equal to 100. Results show that the inclination phenomenon has important effects on both flow and temperature fields at high Richardson numbers. It is also found that the inclination loses its role on mixed convection heat transfer from the wavy wall by the increase of the curve amplitude of the wavy wall for all Richardson numbers. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21005  相似文献   

6.
This paper looks at heat and mass transfer effects on an unsteady MHD flow of a couple‐stress fluid in a horizontal wavy porous space with travelling thermal waves in the presence of a heat source and viscous dissipation. Initially the temperatures of the walls are maintained at different constant temperatures. The analytical expressions for velocity, temperature, and concentration field are obtained by the regular perturbation technique. The results are presented graphically for various values of emerging dimensionless parameters of the problem and are discussed to show interesting aspects of the solution. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21040 PACS: 44.15.+a, 44.30.+f, 44.27.nd, 47.50.Cd  相似文献   

7.
In the present article we talk about the influence of a nanofluid on the peristaltic flow of a Carreau fluid model in the presence of an inclined channel and magnetic field. The mathematical modeling of the proposed problem is given for the two‐ dimensional and directional flow. The governing highly nonlinear coupled equations are simplified by means of the assumptions of long wavelength and low Reynolds number approximation. The solutions of the simplified coupled nonlinear equations are calculated using an analytical approach. At the end, graphical results are displayed to show the effects of various emerging parameters of interest. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(4): 368–383, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21082  相似文献   

8.
The present article investigates the influence of Dufour and Soret effects on mixed convection heat and mass transfer over a vertical plate in a doubly stratified fluid‐saturated porous medium. The plate is maintained at a uniform and constant wall heat and mass fluxes. The Darcy–Forchheimer model is employed to describe the flow in porous medium. The nonlinear governing equations and their associated boundary conditions are initially transformed into dimensionless forms. The resulting system of nonlinear partial differential equations is then solved numerically by the Keller‐box method. The variation of the dimensionless velocity, temperature, concentration, heat, and mass transfer rates for different values of governing parameters involved in the problem are analyzed and presented graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21114  相似文献   

9.
K. Das 《亚洲传热研究》2013,42(3):230-242
This work is focused on numerical simulations of mixed convection stagnation point flow and heat transfer of Cu‐water nanofluids impinging normally towards a shrinking sheet. Similarity transformation technique is adopted to obtain the self‐ similar ordinary differential equations and then solved numerically using symbolic software MATHEMATICA. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed through graphs and tables. Both cases of assisting and opposing flows are considered. The physical aspects of the problem are highlighted and discussed. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21037 2000 Mathematics Subject Classification : 76M20, 76W05  相似文献   

10.
The present article looks at the theoretical analysis of a steady stagnation‐point flow with heat transfer of a third‐order fluid towards a stretching surface. The formulation of the problem has been carried out for a third order fluid and constructed partial differential equations are rehabilitated into ordinary differential equations. The consequential ordinary differential equations are solved analytically using the homotopy analysis method (HAM). Graphical illustrations are shown for various parameters involved in the flow equations. Numerical values of skin friction coefficients and heat flux are computed and presented through tables. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21042  相似文献   

11.
Effects of thermal radiation on the steady laminar magnetohydrodynamic boundary layer flow of a nanofluid over an exponentially stretching sheet is studied theoretically. The governing boundary layer equations of the problem are formulated and transformed into ordinary differential equations, using a similarity transformation. The resulting ordinary differential equations are solved numerically by the shooting method. The effects of the parameters, namely, the magnetic parameter M, radiation parameter NR, and the solid volume fraction parameter ?, are discussed and presented in detail. Different types of nanoparticles namely, Cu, Ag, Al2O3, and TiO2 with the base fluid water, are studied. It is found that the nanoparticles with low thermal conductivity, TiO2 have better enhancement on heat transfer, compared to Cu, Ag, and Al2O3. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(4): 321–331, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21077  相似文献   

12.
The present study investigates the effects of heat and mass transfer on asymmetric laminar flow in a porous channel with expanding or contracting walls in the presence of a chemical reaction. Both walls are assumed to have different permeabilities and expand or contract uniformly at a time‐dependent rate. The governing equations are reduced to ordinary differential equations by using similarity transformation. A perturbation technique in the permeation Reynolds number and wall dilation ratio is employed to obtain the analytical solutions. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21036 PACS: 47.15, 47.63.mf, 44.25+f, 47.70. Fw  相似文献   

13.
The problem of steady two‐dimensional free convective flow of a Walters fluid (model B ′) in a porous medium between a long vertical wavy wall and parallel flat wall in the presence of a heat source is discussed. The channel is divided into two passages by means of a thin, perfectly conductive plane baffle and each stream will have its own pressure gradient and hence the velocity will be individual in each stream. The governing equations of the fluid and the heat transfer have been solved subject to the relevant boundary conditions by assuming that the solution consists of two parts: a mean part and disturbance or perturbed part. Exact solutions are obtained for the mean part and the perturbed part is solved using long wave approximation. Results are presented graphically for the distribution of velocity and temperature fields for varying physical parameters such as Grashof number, wall temperature ratio, porous parameter, heat source/sink parameter, product of non‐dimensional wave number, and space‐coordinate and viscoelastic parameter at different positions of the baffle. The relevant flow and heat transfer characteristics, namely, skin friction and the rate of heat transfer at both walls, has been discussed in detail. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21118  相似文献   

14.
A numerical analysis has been carried out to investigate the problem of MHD boundary‐layer flow and heat transfer of a viscous incompressible fluid over a moving vertical permeable stretching sheet with velocity and temperature slip boundary condition. A problem formulation is developed in the presence of radiation, viscous dissipation, and buoyancy force. A similarity transformation is used to reduce the governing boundary‐layer equations to coupled higher‐order nonlinear ordinary differential equations. These equations are solved numerically using the fourth‐order Runge–Kutta method along with shooting technique. The effects of the governing parameters such as Prandtl number, buoyancy parameter, slip parameter, magnetic parameter, Eckert Number, suction, and radiation parameter on the velocity and temperature profiles are discussed and shown by plotting graphs. It is found that the temperature is a decreasing function of the slip parameter ST. The results also indicate that the cooling rate of the sheet can be improved by increasing the buoyancy parameter. In addition the numerical results for the local skin friction coefficient and local Nusselt number are computed and presented in tabular form. The numerical results are compared and found to be in good agreement with previously published results on special cases of the problem. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 412–426, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21086  相似文献   

15.
The problem of a two‐dimensional free convective mass transfer flow of an incompressible, viscous, and electrically conducting fluid past a continuously moving semi‐infinite vertical porous plate with large suction in the presence of a magnetic field applied normal to the plate is studied. The non‐linear partial differential equations governing the flow have been transformed by a set of similarity transformations into a system of non‐linear ordinary differential equations. The resulting system of the similarity equations are solved analytically adopting the perturbation technique. The expressions for the velocity field, temperature field, concentration field, induced magnetic field, drag coefficient, and the coefficient of the rate of heat and mass transfer at the plate are obtained. The results are discussed in details through graphs and tables to observe the effect of various physical parameters involved in the problem. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21097  相似文献   

16.
The problem of steady, laminar, coupled heat and mass transfer by MHD free convective boundary‐layer flow along a vertical flat plate with the combined effects of streamwise sinusoidal variations of both the surface temperature and the species concentration in the presence of Soret and Dufour effects is considered. A suitable set of dimensionless variables is used to transform the governing equations of the problem into a non‐similar form. The resulting non‐similar equations have the property that they reduce to various special cases previously considered in the literature. An adequate and efficient implicit, tri‐diagonal finite difference scheme is employed for the numerical solution of the obtained equations. Various comparisons with previously published work are performed and the results are found to be in excellent agreement. A representative set of numerical results for the velocity, temperature, and concentration profiles as well as the surface shear stress, rate of heat transfer, and the rate of mass transfer is presented graphically for various parametric conditions and is discussed. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21033  相似文献   

17.
The stability of a thin layer of viscoelastic fluid flowing through a porous medium down a non‐uniformly heated inclined plane with a constant temperature gradient along the plane is considered. The film flow system is influenced by gravity, mean surface tension, thermocapillary forces, viscoelastic forces, porosity, and permeability of porous medium. We seek a solution of the stability problem in a series in small wave numbers, and the obtained results, when the plane is heated in the downstream direction, show that the Marangoni, Galileo, and Biot numbers, porosity, and permeability of the porous medium have dual roles in the stability of the flow system, while the viscoelastic parameter and angle of inclination have stabilizing effects, and the Prandtl number has a destabilizing effect. The effects of these physical parameters are also discussed in the case when the plane is cooled in the downstream direction, and we found that their effects are opposite to those of the previous case. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21105  相似文献   

18.
This paper examines thermal‐diffusion and diffusion‐thermo effects on the fully developed MHD flow of a micropolar fluid through a porous space in a vertical channel with asymmetric wall temperatures and concentrations. The homotopy analysis method (HAM) is adopted to obtain the approximate analytical solution for the velocity, micro‐rotation, temperature, and concentration field. The convergence and the accuracy of the solutions are discussed. The role of pertinent parameters on the heat and mass transfer characteristics of the flow are presented graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(6): 561–576, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21100  相似文献   

19.
This paper discusses the effects of heat and mass transfer on the magnetohydrodynamic (MHD) peristaltic flow of second grade fluid in a channel with flexible walls. Expressions of stream function, temperature, concentration field, and heat transfer coefficient have been computed. The effects of sundry parameters are sketched and examined. The known results of viscous fluid are obtained as the limiting cases of the present expressions. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20361  相似文献   

20.
This laminar fluid study investigates the effects of a magnetic field on the entropy generation during fluid flow and heat transfer due to an exponentially stretching sheet. Using the suitable transformations we have obtained the analytical solutions for momentum and energy equation in terms of Kummer's function. The velocity and temperature profiles are obtained for various physical parameters which are utilized to find the entropy generation number Ns and the Bejan number Be. The effects of various parameters on entropy production number and the Bejan number are studied through graphs using velocity and temperature profiles. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21112  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号