首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild‐type and GzmB‐knockout mice were repeatedly exposed to minimal erythemal doses of solar‐simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild‐type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB‐mediated fibronectin fragments increased the expression of collagen‐degrading matrix metalloproteinase‐1 (MMP‐1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age‐related chronic inflammatory diseases.  相似文献   

2.
Increased expression of matrix metalloproteinase‐1 (MMP‐1) and reduced production of type I collagen by dermal fibroblasts are prominent features of aged human skin. We have proposed that MMP‐1‐mediated collagen fibril fragmentation is a key driver of age‐related decline of skin function. To investigate this hypothesis, we constructed, characterized, and expressed constitutively active MMP‐1 mutant (MMP‐1 V94G) in adult human skin in organ culture and fibroblasts in three‐dimensional collagen lattice cultures. Expression of MMP‐1 V94G in young skin in organ culture caused fragmentation and ultrastructural alterations of collagen fibrils similar to those observed in aged human skin in vivo. Expression of MMP‐1 V94G in dermal fibroblasts cultured in three‐dimensional collagen lattices caused substantial collagen fragmentation, which was markedly reduced by MMP‐1 siRNA‐mediated knockdown or MMP inhibitor MMI270. Importantly, fibroblasts cultured in MMP‐1 V94G‐fragmented collagen lattices displayed many alterations observed in fibroblasts in aged human skin, including reduced cytoplasmic area, disassembled actin cytoskeleton, impaired TGF‐β pathway, and reduced collagen production. These results support the concept that MMP‐1‐mediated fragmentation of dermal collagen fibrils alters the morphology and function of dermal fibroblasts and provide a foundation for understanding specific mechanisms that link collagen fibril fragmentation to age‐related decline of fibroblast function.  相似文献   

3.
The objective was to study Dupuytren's myofibroblast cells in constrained collagen matrices in order to more closely emulate their in vivo environment and, to correlate their contractility with α‐smooth muscle actin (α‐SMA) expression and determine if dermal fibroblasts regulate Dupuytren's myofibroblast phenotype. Isotonic and isometric force contraction by cells isolated from Dupuytren's nodules, palmar and non‐palmar skin fibroblasts was measured in collagen matrices. The effect of co‐culturing nodule cells with dermal fibroblasts on isometric contraction was examined. Isometric contraction was correlated with levels of α‐SMA mRNA by pcr and protein by Western blotting, and α‐SMA distribution assessed by immunofluorescence. Dupuytren's nodule cells exhibited similar levels of isotonic contraction to both palmar and non‐palmar dermal fibroblasts. However, nodule cells generated high levels of isometric force (mean: 3.5 dynes/h), which continued to increase over 24 h to a maximum of 173 dynes. In contrast, dermal fibroblasts initially exhibited low levels of contraction (mean: 0.5 dynes/h) and reached tensional homeostasis on average after 15 h (range: 4–20 h), with a maximum force of 52 dynes. Although all three cell types had similar α‐SMA mRNA levels, increased levels of α‐SMA protein were observed in nodule cells compared to dermal fibroblasts. α‐SMA localised to stress fibres in 35% (range: 26–50%) of nodule cells compared to only 3% (range:0–6%) of dermal fibroblasts. Co‐cultures of Dupuytren's cells and dermal fibroblasts showed no contractile differences. The contractile phenotype of Dupuytren's myofibroblasts is determined by increased α‐SMA protein distributed in stress fibres, not by cellular mRNA levels. Dupuytren's cell contractility is not influenced by dermal fibroblasts. J. Cell. Physiol. 224: 681–690, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The dermal compartment of skin is primarily composed of collagen‐rich extracellular matrix (ECM), which is produced by dermal fibroblasts. In Young skin, fibroblasts attach to the ECM through integrins. During ageing, fragmentation of the dermal ECM limits fibroblast attachment. This reduced attachment is associated with decreased collagen production, a major cause of skin thinning and fragility, in the elderly. Fibroblast attachment promotes assembly of the cellular actin cytoskeleton, which generates mechanical forces needed for structural support. The mechanism(s) linking reduced assembly of the actin cytoskeleton to decreased collagen production remains unclear. Here, we report that disassembly of the actin cytoskeleton results in impairment of TGF‐β pathway, which controls collagen production, in dermal fibroblasts. Cytoskeleton disassembly rapidly down‐regulates TGF‐β type II receptor (TβRII) levels. This down‐regulation leads to reduced activation of downstream effectors Smad2/Smad3 and CCN2, resulting in decreased collagen production. These responses are fully reversible; restoration of actin cytoskeleton assembly up‐regulates TβRII, Smad2/Smad3, CCN2 and collagen expression. Finally, actin cytoskeleton‐dependent reduction of TβRII is mediated by induction of microRNA 21, a potent inhibitor of TβRII protein expression. Our findings reveal a novel mechanism that links actin cytoskeleton assembly and collagen expression in dermal fibroblasts. This mechanism likely contributes to loss of TβRII and collagen production, which are observed in aged human skin.  相似文献   

5.
The metabolism of carbohydrates, organic acids, amino acids and phenolics was compared between the sun‐exposed peel and the shaded peel of apple fruit. Contents of sorbitol and glucose were higher in the sun‐exposed peel, whereas those of sucrose and fructose were almost the same in the two peel types. This was related to lower sorbitol dehydrogenase activity and higher activities of sorbitol oxidase, neutral invertase and acid invertase in the sun‐exposed peel. The lower starch content in the sun‐exposed peel was related to lower sucrose synthase activity early in fruit development. Dark respiratory metabolism in the sun‐exposed peel was enhanced by the high peel temperature due to high light exposure. Activities of most enzymes in respiratory metabolism were higher in the sun‐exposed peel, but the concentrations of most organic acids were relatively stable, except pyruvate and oxaloacetate. Due to the different availability of carbon skeletons from dark respiration in the two peel types, amino acids with higher C/N ratios are accumulated in the sun‐exposed peel whereas those with lower C/N ratios are accumulated in the shaded peel. Contents of anthocyanins and flavonols and activities of phenylalanine ammonia‐lyase, UDP‐galactose:flavonoid 3‐O‐glucosyltransferase and several other enzymes were higher in the sun‐exposed peel than in the shaded peel, indicating the entire phenylpropanoid pathway is upregulated in the sun‐exposed peel. Comprehensive analyses of the metabolites and activities of enzymes involved in primary metabolism and secondary metabolism have allowed us to gain a full picture of the metabolic network in the two peel types under natural light exposure.  相似文献   

6.
Conditioned medium from adipose derived stem cells (ADSC-CM) stimulates both collagen synthesis and migration of fibroblasts, and accelerates wound healing in vivo. Recently, the production and secretion of growth factors has been identified as an essential function of adipose-derived stem cells (ADSCs). However, the main soluble factor of ADSC-CM which mediates paracrine effects and its underlying mechanism has not been elucidated yet. In this study, we considered transforming growth factor-beta1 (TGF-β1) as a strong candidate for paracrine effect of ADSC-CM and investigated collagen synthesis and hyaluronic acid synthase (HAS) expression. After ADSC-CM addition, collagen type I, type III, HAS and hyaluronic acid (HA) expressions on human dermal fibroblasts (HDFs) were evaluated. Furthermore, to clarify effects of TGF-β1 as a paracrine mediator, TGF-β1 antibody and external supplementary TGF-β1 were treated to HDFs. Collagens type I, type III, HAS-1 and HAS-2 mRNA expressions of HDFs were greatly increased by ADSC-CM treatment, however there was no change in TGF-β1 antibody treated HDFs compared with non-treated control. These results strongly demonstrate that TGF-β1 plays an important role as a paracrine mediator of ECM synthesis. The fact that TGF-β1 contained in ADSC-CM not only accelerates collagen deposition but also increase hyaluronic acid synthesis of HDFs through HAS-1 and HAS-2 expression was also elucidated in this study. Therefore, ADSC-CM shows promise for the treatment of cutaneous wounds and accelerates granulation formation during healing process.  相似文献   

7.
8.
9.
10.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both alpha 1(I) and alpha 2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by alpha, alpha'-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

11.
Dermal fibroblasts produce a collagen-rich extracellular matrix, which confers mechanical strength and resiliency to human skin. During aging, collagen production is reduced and collagen fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This aberrant collagen homeostasis results in net collagen deficiency, which impairs the structural integrity and function of skin. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis, in primary human skin dermal fibroblasts. As replicative senescence is a form of cellular aging, we have utilized replicative senescent dermal fibroblasts to further investigate the connection between elevated CCN1 and aberrant collagen homeostasis. CCN1 mRNA and protein levels were significantly elevated in replicative senescent dermal fibroblasts. Replicative senescent dermal fibroblasts also expressed significantly reduced levels of type I procollagen and increased levels of MMP-1. Knockdown of elevated CCN1 in senescent dermal fibroblasts partially normalized both type I procollagen and MMP-1 expression. These data further support a key role of CCN1 in regulation of collagen homeostasis. Elevated expression of CCN1 substantially increased collagen lattice contraction and fragmentation caused by replicative senescent dermal fibroblasts. Atomic force microscopy (AFM) further revealed collagen fibril fragmentation and disorganization were largely prevented by knockdown of CCN1 in replicative senescent dermal fibroblasts, suggesting CCN1 mediates MMP-1-induced alterations of collagen fibrils by replicative senescent dermal fibroblasts. Given the ability of CCN1 to regulate both production and degradation of type I collagen, it is likely that elevated-CCN1 functions as an important mediator of collagen loss, which is observed in aged human skin.  相似文献   

12.
The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC‐CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC‐CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC‐CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro‐angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC‐CM versus serum control, the ratio between collagen III and I mRNAs increased by 2‐fold. Furthermore, the gene expression for α‐smooth muscle actin, tissue inhibitor of metalloproteinase‐1 and 2 and matrix metalloproteinase‐14 was significantly increased by approximately 2‐fold. In conclusion, factors existing in MSC‐CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro‐healing phenotype in fibroblasts.  相似文献   

13.
Wound healing is critically affected by age, ischemia, and growth factors such as TGFbeta1. The combined effect of these factors on fibroblast migration, an essential component of wound healing, is poorly understood. To address this deficiency, we examined expression of TGFbeta receptor type I and II (TGFbetaRI and RII) under normoxia or hypoxia (1% O(2)) in cultured human dermal fibroblasts (HDFs) from young (ages 24-33) and aged (ages 61-73) adults. TGFbetaRI and RII expression was similar in both groups under normoxia. Hypoxia did not alter receptor levels in young HDFs but significantly decreased TGFbetaRI in aged cells (12 and 43%, respectively). Additionally, young cells displayed a 50% increase in activation of p42/p44 mitogen-activated kinase by TGFbeta1 (2-200 pg/ml) under hypoxia while aged cell levels of active p42/p44 decreased up to 24%. To determine functional outcomes of these findings, we measured the migratory capacity of the cells on type I collagen using a gold salt migration assay. Hypoxia increased the migratory index (MI) of young HDFs over normoxia by 30% but had no effect on aged cells. Under normoxia, TGFbeta1 (1-1000 pg/ml) increased young HDF migration in a concentration-dependent manner up to 109% over controls but minimally increased aged HDF migration (37%). Under hypoxia, TGFbeta1 significantly increased young cell MI at all concentrations but was without effect on the aged HDF response. These data demonstrate that aged fibroblasts have an impaired migratory capacity with complete loss of responsiveness to hypoxia and deficits in the migratory and signal transduction responsiveness to TGFbeta1 that may partly explain diminished healing capabilities often observed in aged patients.  相似文献   

14.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both α1(I) and α2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal and mutant cells is severely depressed without ascorbate but in all cultures collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by α,α′-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

15.
Human skin is a complex multifunctional organ which covers and surrounds the whole body ensuring a key function of protection against external injuries. Because of this unique situation, aging of skin is the result of both extrinsic factors-mostly sun exposure leading to photoaging- and intrinsic factors assumed to represent chronological aging. Studies of such complex phenomena on human volunteers is questionable and classical cultures of skin cells are not close enough to in vivo physiological conditions. However it is possible to address these questions by reconstructing human skin in vitro with both a living dermal equivalent defined as a fibroblast-contracted collagen gel (Bell et al., 1979) and a fully differentiated epidermis characterized by horny layers (Asselineau et al., 1985).  相似文献   

16.
Fibroblasts have a major role in the synthesis and reorganization of extracellular matrix that occur during wound repair. An impaired biosynthetic or functional response of these cells to stimulation by growth factors might contribute to the delayed wound healing noted in aging. We, therefore, compared the responses of dermal fibroblasts from young and elderly individuals (26, 29, 65, 89, 90, and 92 years of age) to transforming growth factor-β1 (TGF-β1) with respect to: (1) the synthesis of type I collagen and SPARC (two extracellular matrix proteins that are highly expressed by dermal fibroblasts during the remodeling phase of wound repair) and (2) the contraction of collagen gels, an in vitro assay of wound contraction. With the exception of one young donor, all cultures exposed for 44 hours to 10 ng/ml TGF-β1 exhibited a 1.6- to 5.5-fold increase in the levels of secreted type 1 collagen and SPARC, relative to untreated cultures, and exhibited a 2.0- to 6.2-fold increase in the amounts of the corresponding mRNAs. Moreover, the dose-response to TGF-β1 (0.1–10 ng/ml), as determined by synthesis of type I collagen and SPARC mRNA, was as vigorous in cells from aged donors as in cells from a young donor. In assays of collagen gel contraction, fibroblasts from all donors were stimulated to a similar degree by 10 ng/ml TGF-β1. In conclusion, cells from both young and aged donors exhibited similar biosynthetic and contractile properties with exposure to TGF-β1. It therefore appears that the impaired wound healing noted in the aged does not result from a failure of their dermal fibroblasts to respond to this cytokine. © 1994 Wiley-Liss, Inc.  相似文献   

17.
18.
Photodynamic therapy (PDT) is a treatment option for skin cancer and premalignant skin diseases and exhibits rejuvenation effects, including reducing fine wrinkles and whitening, on aged skin. In this study, we investigated the mechanism underlying the whitening effects of PDT on melanocytes (MCs) in vitro and in vivo. Exposure of MCs to PDT in vitro reduced their melanin content and tyrosinase activity without, however, affecting cell survival. Interestingly, melanogenesis was also inhibited by exposing MCs to conditioned media of PDT‐treated keratinocytes or dermal fibroblasts. This paracrine effect was likely due to a decreased release of melanocyte‐stimulating cytokines such as Kit ligand and hepatocyte growth factor from these cells. Furthermore, we observed that PDT reduced mottled hyperpigmentation of photoaged patient skin in vivo, highlighting the clinical importance of skin whitening by PDT.  相似文献   

19.
20.
The adult hair follicle has well-defined dermal and epithelial populations that display distinct developmental properties. The follicular dermal cells, namely the dermal papilla and dermal sheath, are derived from the same mesenchymal cells as dermal fibroblasts and therefore, we believed that follicular cells could be useful sources of interfollicular keratinocytes and fibroblast for skin wound repair. In this study, we evaluated the relative effect of various mesenchymal-derived cells on wound healing following skin injury. Human dermal cells, including two different follicular dermal cells and skin fibroblasts were cultured in collagen sponges and compared with respect to wound healing. Results indicated that there was no significant difference in wound contraction and angiogenesis among the cell types. Further, dermal sheath cells exhibited relatively poor results compared with other cells in new collagen synthesis. Finally, basement membrane reformation and new collagen synthesis for the dermal papilla cell grafts was superior to those of the dermal sheath cells or fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号