首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary electroless Ni–Cu–P alloy films were deposited by using nickel sulphate (B1)- and nickel chloride (B2)-based alkaline baths. Alloy films were characterized for their structure, morphology, chemical composition and microhardness. A single broad peak was obtained in XRD for both B1 and B2 films and the calculated grain sizes are 1.6 and 1.9 nm, respectively. Optical microscopic examination of the deposited coatings revealed a less nodular structure for B2-based coatings. SEM micrographs showed that films were smooth and nodular. Compositional analysis made on these deposits using EDX and the chemical state identification by XPS showed that the coatings are almost identical. AFM studies showed that the deposits from B2 bath are comparatively smoother with less nodular structure. Microhardness measurements and potentiodynamic polarization studies in 3.5% NaCl solution showed that both deposits have similar properties.  相似文献   

2.
Chemical surface preparation for Ni–P electroless metallization of poly(ethylene terephthalate) (PET) films without using Chromium-based chemicals, was studied. The applicability of this method was verified by a subsequent metallization process. Thermal analysis was conducted to observe the main thermal transitions and stability of the polymer and metallized films. Contact angle analysis was performed to assess the surface hydrophilicity so as to optimize the substrate preparation process. X-ray diffraction, EDAX and SEM analysis were used to understand the composition and morphology of the polymeric substrate and Ni–P coat growing process. Adherence strength, contact sheet resistivity and optical diffuse reflection were measured on the metallized films. The time of chemical etching affects the polymer surface hydrophilicity, polymer/metal adherence strength, surface resistance and optical diffuse reflection, while Ni coating morphology is controlled by the pH of the electroless bath. High wettability of the polymer surface, adherence strength of 800 N cm−2, high optical diffuse reflection and low surface resistivity of the Ni coating, were found for films etched for 60 min. Metallizations performed at pH 7.5 produce Ni–P coatings with 12.0 wt.% phosphorous content, which were amorphous and flexible. The contact sheet resistivity of the plated films is sensitive to roughness variations of the substrate. The method proposed in this work allows the production of metallized films appropriate for the fabrication of flexible circuits.  相似文献   

3.
Biofouling is considered to be the limiting factor of the majority of membrane processes. Since microbial adhesion is a prerequisite for membrane biofouling, prevention of microbial adhesion and colonization on the membrane surfaces will have a major impact in preventing biofouling. In this paper the effects of surface free energies on bacterial adhesion were investigated and the optimum surface free energy of membranes on which bacterial adhesion force is minimal was obtained. A graded nickel–polytetrafluoroethylene (PTFE) composite coating technique was used to tailor the surface free energy of membrane diffusers to the optimum value. Initial experimental results showed that these coatings reduced microbial adhesion by 68–94%.  相似文献   

4.
The effects of the addition of three types of surfactants (cationic, anionic, non-ionic) at different concentrations in the plating bath on the deposition rate, PTFE content and surface morphology of electroless Ni-P/PTFE composite coatings were investigated. It was demonstrated that the cationic and non-ionic surfactants created a uniform distribution of PTFE particles in the coatings. The effects of the surfactant type and concentration on the corrosion properties of Ni-P/PTFE coatings were also studied. The corrosion resistance was increased by the incorporation of PTFE particles into the Ni-P matrix. The level of improvement depended largely on the type and concentration of the applied surfactants.  相似文献   

5.
Laser surface alloying of an electroless plating Ni–P coatings on an Al-356 aluminium alloy was carried out using a 1-kW pulsed Nd:YAG laser. The microstructure, chemical composition and phase identification of the alloyed layer were determined using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffractometry (XRD), respectively. It was shown that laser surface treatment produced a relatively smooth, crack-free and hard surface layer. The hardness of the surface significantly increased due to the formation of the uniformly distributed fine Ni–Al intermetallic phases. The corrosion behaviour of the surface alloyed specimens in 3.5% NaCl solution at 23 °C was also determined by electrochemical techniques. The laser-alloyed surface showed an improved corrosion and pitting potential compared to the substrate as well as the plated Ni–P coating.  相似文献   

6.
A newly developed PTFE foam coating filter was developed which can be used for hot gas cleaning at temperatures up to 250 °C. The emulsion-type PTFE was coated onto a woven glass fiber using a foam coating method. The filter surface was closely examined using X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The XPS results were used to determine the binding force between the carbon and fluorine of PTFE, which imparts coating stability to the filter medium. More than 95% of the bonds of the PTFE foam coating filter were between carbon and fluorine, and this filter demonstrated excellent hydrophobic and good oleophobic properties at the same time. The contact angles of liquid droplets on the filter surface were used to predict the potential wetability of the filter against water or oil. In addition, the very low surface free energy of the filter medium, which was evaluated using the Owens-Wendt method, demonstrates a very stable surface and a high de-dusting quality.  相似文献   

7.
The present work investigates the effects of individual and combined additions of Cd and Ag on precipitation processes in an Al–4Cu–0.3Mg (wt%) alloy. Analytical scanning transmission electron microscopy revealed that microalloying with Cd stimulates nucleation of θ′ phase on {001} planes and that Cd-rich particles form on the rim and broad facets of the θ′ platelets. We interpret these observations to suggest that Cd nucleates heterogeneously at the θ′– interface and that θ′ can also nucleate heterogeneously at the Cd– interface. In the quinary alloy, it was observed that Ag and Cd additions seem to work independently resulting in a fine and uniform dispersion of both Ω and θ′. Furthermore, the hardening effect of the {111} Ω phase appears to be more potent than other precipitates formed in this system since the hardness of the quinary alloy was intermediate between the Al–Cu–Mg–Ag and the Al–Cu–Cd alloys.  相似文献   

8.
The statistics of surface damage on polycrystalline aluminium plates caused by acoustic cavitation is studied experimentally as a function of time. Cavitation is shown to produce a uniform distribution of crater-like holes with different depth, area and eccentricity. Most notably, the size distribution of such craters evolves with time from a gamma function into a power law. By contrast, on the surface of a martensitic Cu–Ni–Al crystal cavitation damage generates ramified patterns, reminiscent of a fractal object.  相似文献   

9.
In this paper, polytetrafluoroethylene (PTFE) films are modified using non-equilibrium plasma generated by homogeneous DBD in air at medium pressure, and the results are compared to those treated by using filamentary DBD in air at atmospheric pressure. The surface properties of PTFE films before and after the treatments are studied using contact angle and surface energy measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the plasma treatments modify the PTFE surface in both morphology and composition. The PTFE films modified in both treatments show a remarkable decrease in water contact and a remarkable increase in surface energy. XPS analysis reveals that oxygen-containing polar groups are introduced onto the PTFE surface, and SEM analysis shows that the surfaces of the films are etched after both the treatments. It is found that homogeneous DBD is more effective in PTFE surface modification than filamentary DBD as it can make the contact angle decline to a lower level by introducing more oxygen-containing groups, and the possible reason for this effect is discussed.  相似文献   

10.
A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon®). Scanning electron microscopy images showed a “bird's nest”-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ∼165° with a very low contact angle hysteresis of ∼3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF3 and CF2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.  相似文献   

11.
Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O2 and N2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE.In the N2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N2 plasma pre-treatment was more effective than the O2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N2 plasma pre-treatment showed good wear resistance, compared with that with O2 plasma pre-treatment.  相似文献   

12.
Superhydrophobic polytetrafluoroethylene (PTFE) thin films were obtained by pulsed laser deposition (PLD) technique carried out with KrF excimer laser (λ = 248 nm) of about 1 J/cm2 at a pressure of 1.33 Pa. The samples exhibit high water contact angle of about 170° and the sliding angle smaller than 2°. From studying the surface morphology of the prepared films, it is believed that the nano-scale surface roughness has enhanced the hydrophobic property of the PTFE. The increase of trapping air and reducing liquid-solid contact area due to the rough surface, as suggested by the Cassie-Baxter's model, should be responsible for superhydrophobicity of the PLD prepared films. This study thus provides a convenient one-step method without using wet-process to produce a superhydrophobic surface with good self-cleaning properties.  相似文献   

13.
In current research, low carbon steel plates were coated by Ni-P electroless method. The effect of adding different concentrations (ranging from 0.01 g/l to 0.5 g/l) of TiC nano-sized particles to the plating bath on deposition rate, surface morphology and corrosion behavior of Ni-P-TiC composite coatings were investigated. The surface morphology and the relevant structure were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Corrosion behavior of the coated steel was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results showed that addition of TiC nano-particles to Ni-P electroless bath not only changes the surface morphology of Ni-P coating, but also improves corrosion resistance of the steel in comparison with TiC free Ni-P electroless coating. In addition, the deposition rate of coating was also affected by incorporation of TiC particles. It was also found that improvement in corrosion resistance largely depends on the phosphorous and TiC concentrations on the coatings.  相似文献   

14.
Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.  相似文献   

15.
Wettability characteristic of PTFE and glass surface irradiated by keV ions   总被引:1,自引:0,他引:1  
Commercial PTFE and soda lime glass were irradiated by keV O3+ and F4+. After irradiation, in contrast to the decrease of contact angle on PTFE, contact angle on glass increased apparently. SEM observation revealed that irradiation did not cause noticeable change in surface topological structure. XPS was used to investigate chemical structure changes on the surface. Defluorination effect and formation of oxygen containing group caused by irradiation were considered to the reason of more hydrophilic PTFE surface. On the surface of irradiated glass, more carbon contaminations were observed. The differences of underlying physical and chemical processes between the two kinds of samples are discussed.  相似文献   

16.
Electroless Ag-polytetrafluoroethylene (PTFE) composite coatings were prepared on stainless steel sheets. The existence and distribution of PTFE in the coatings were analysed with an energy dispersive X-ray microanalysis (EDX). The contact angle values and surface energies of the Ag-PTFE coatings, silver coating, stainless steel, titanium and E. coli Rosetta were measured. The experimental results showed that stainless steel surfaces coated with Ag-PTFE reduced E. coli attachment by 94-98%, compared with silver coating, stainless steel or titanium surfaces. The anti-bacterial mechanism of the Ag-PTFE composite coatings was explained with the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The anticorrosion properties of the Ag-PTFE composite coatings in 0.9% NaCl solution were studied. The results showed that the corrosion resistance of the Ag-PTFE composite coatings was superior to that of stainless steel 316L.  相似文献   

17.
Alloy formation at the Ni–Al interface for thin nickel films deposited on Al(110) surfaces has been studied using high-energy ion scattering/channeling (HEIS) and X-ray photoelectron spectroscopy (XPS). For nickel atoms deposited at room temperature on Al(110), a large amount of nickel–aluminum intermixing occurs at the interface. For the first two monolayers (ML) of deposited nickel, an NiAl-like compound is formed. The intermixing continues with a different rate, forming an Ni3Al-like compound for nickel coverages from 2 to 8 ML, at which point a nickel metal film begins to grow on the surface. Nickel atoms deposited at 250°C on the Al(110) surface exhibit no surface compound formation, but diffuse up to 400 Å into the aluminum substrate. Interatomic potentials based on the embedded-atom method (EAM) are used in a Monte Carlo approach to simulate the evolution of the Ni–Al(110) interface as a function of the nickel coverage. The calculated ion-scattering yields and X-ray photoelectron intensities from nickel and aluminum atoms in these simulated interfaces are in good quantitative agreement with the experimental results. The simulations show a high-density Ni–Al alloy forming at the Al(110) surface which apparently inhibits outward diffusion of aluminum, leading to the more nickel-rich alloy and finally nickel film growth. The ion-scattering simulations show an unusually large amount of backscattering occurring below the Ni–Al(110) interface, apparently associated with defocusing of the incident ion beam.  相似文献   

18.
Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5 MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications.  相似文献   

19.
Results of the low-temperature specific heat measurements (2–80 K) for one austenitic and three martensitic Ni–Mn–Ga ferromagnetic alloys are presented. The alloy compositions are chosen to comprise a wide span of valence electron concentrations e/a=7.3–7.78. Debye temperature (261–345 K) is found to be an increasing function of e/a while the experimental values of the Sommerfeld coefficient (2.9–3.4 mJ/mol K2) appear to be increasing in the martensitic region only. Observation of those trends rekindles the discussion about the role of vibrational and electronic contributions to the lattice instability and transformation mechanism of studied alloys.  相似文献   

20.
A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3° to 30 ± 4° treated at 100 °C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 °C for 3 h. Hydrophilic groups such as carbonyl (CO) and hydroxyl (OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K0.27MnO2·0.54H2O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号