首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The analysis of the seepage field in fractured rock mass is very important to the design of an underground oil storage project and must be done in the primary stage. A novel analytical method to calculate the anisotropic permeability tensor of an initial seepage field is presented in this paper. Fracture network simulation and results of water-pressing injection tests are used for the development of analytical method. As an example, the proposed method is used to model initial and subsequent seepage fields of Dalian water-sealed underground oil storage caverns project. The changes in the seepage field during the construction and operation periods are investigated adequately. The results indicate that this design meets the requirements for the groundwater level and the vertical hydraulic gradient, although their distributions in the two periods are different, the proposed method is acceptable for the anisotropic seepage analysis.  相似文献   

2.
水封准则是地下水封石油洞库设计与运行管理的基础。为获取工程应用更加简便实用的地下水封石油洞库水封准则,基于裂隙水流动阻力效应的研究,建立了气压推动裂隙水迁移的油汽逃逸模型;根据裂隙水迁移启动的临界条件,推导了铅直裂隙和倾斜裂隙中裂隙水满足油汽封存的临界水封厚度计算公式,讨论了临界水封厚度条件下洞库的原油水封效果。利用气液两相流数值分析成果和工程实际监测成果,论证了提出基于临界水封厚度的地下水封石油洞库水封准则的正确性。  相似文献   

3.
4.
由于核废料地质储存、地热开采、深部油气开采的工程需求,裂隙岩体渗透性及其随着应力、温度的影响受到广泛关注。通过温度-渗流-应力耦合三轴仪对大理岩人工裂隙渗透率随应力及温度变化规律进行了试验研究,获得了大理岩闭合裂隙渗透率随应力、温度的变化趋势及受影响程度。在试验基础上,通过数值方法研究了裂隙岩体等效渗透系数的尺寸效应及各向异性,获得了该裂隙岩体的等效渗透系数REV及渗透张量。  相似文献   

5.
Stress-dependent permeability of fractured rock masses: a numerical study   总被引:7,自引:0,他引:7  
We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional distinct element method program, UDEC, based on a realistic discrete fracture network realization. A series of “numerical” experiments were conducted to calculate changes in the permeability of simulated fractured rock masses under various loading conditions. Numerical experiments were conducted in two ways: (1) increasing the overall stresses with a fixed ratio of horizontal to vertical stresses components; and (2) increasing the differential stresses (i.e., the difference between the horizontal and vertical stresses) while keeping the magnitude of vertical stress constant.These numerical experiments show that the permeability of fractured rocks decreases with increased stress magnitudes when the stress ratio is not large enough to cause shear dilation of fractures, whereas permeability increases with increased stress when the stress ratio is large enough. Permeability changes at low stress levels are more sensitive than at high stress levels due to the nonlinear fracture normal stress-displacement relation. Significant stress-induced channeling is observed as the shear dilation causes the concentration of fluid flow along connected shear fractures. Anisotropy of permeability emerges with the increase of differential stresses, and this anisotropy can become more prominent with the influence of shear dilation and localized flow paths. A set of empirical equations in closed-form, accounting for both normal closure and shear dilation of the fractures, is proposed to model the stress-dependent permeability. These equations prove to be in good agreement with the results obtained from our numerical experiments.  相似文献   

6.
 采用加拿大ESG微震监测系统对锦州某大型地下水封石油洞库局部开挖过程进行实时监测和分析,圈定监测范围内围岩潜在危险区域,再现开挖过程中洞库失稳区域的岩体微破裂萌生、发展和集聚。结果表明:(1) 采用人工定点敲击试验对监测系统定位性能进行测试,确定研究区域岩体整体等效P波波速为5 200 m/s,传感器阵列范围内的震源定位误差小于8 m;(2) 监测区域岩体微破裂呈2个条带状聚集,一条位于水幕巷道6东侧,水幕巷道1和2范围,与水平面呈缓倾角。另一条位于储油洞室1北与1南范围2+40~2+60里程区域内,与该区域辉绿岩脉分布范围一致,说明微震监测系统可以查明判别岩脉等软弱结构面情况。这是由于大断面的储油洞室的强开挖卸荷,高能量的释放导致岩脉的“过度”损伤,从而诱发大量的微破裂。研究结果证明微震监测技术在地下水封石油洞库这种特殊岩体结构中应用的可行性,为后期大规模微震监测系统的构建与实施提供参考依据。  相似文献   

7.

Tensile deformation and damage play an essential role in rock engineering problems. This paper presents a framework for evaluating the stability of a group of anhydrite caverns combining both experimental and numerical methods. In this study, the tensile Young’s modulus and Poisson’s ratio of anhydrite are determined based on the Brazilian disc splitting test. The tests show that the tensile Young’s modulus of anhydrite is less than the compressive Young’s modulus, with a ratio of approximately 0.58–0.91. The tensile Poisson’s ratio is greater than the compressive Poisson’s ratio, with a ratio of approximately 2.47–3.20. Based on the differences between the mechanical parameters (Young’s modulus, Poisson’s ratio) of anhydrite in the tensile and compressive states, a user-defined constitutive model is developed with the Hoek-Brown failure criterion, which describes the tensile and compressive behaviour at a laboratory scale. Finally, a large-scale three-dimensional (3D) anhydrite cavern group located in Anhui Province, China, which was formed by mining activity over the past 10 years, is used as a case study to illustrate the proposed framework. The model for the anhydrite cavern group is established in FLAC3D5.0, and the stability of the anhydrite cavern group used for underground oil storage is then analysed with this model. The simulation results indicate that after the exploitation is completed, there are few plastic zones and tensile elements in the surrounding rock near the cavern group. The maximum value of cavern roof settlement is approximately 5.54 mm. The maximum cavern bottom upheaval is approximately 6.11 mm, and the maximum ground subsidence is approximately 3.0 mm. The results indicate that the Anhui Hengtai anhydrite cavern group possesses good stability potential as an underground oil storage space.

  相似文献   

8.
An underground oil storage facility comprising six storage caverns is under construction in southern Korea. Each of the horseshoe-shaped caverns is 18 m wide, 30 m high, and 400–600 m long. The artificial water curtain system used consisted of water curtain tunnels and horizontal boreholes drilled from these tunnels, and pre-grouting measures have been introduced to keep the bedrock saturated all the time in order prevent oil from migrating through rock mass. The results of site investigation show that the bedrock at the site was very competent and impermeable and, hence, a suitable medium for the storage of oil. This conclusion was confirmed later by the results of design analysis, the revised instrumentation program, and hydraulic tests performed during construction. In general, design concepts for the excavation and support and water curtain system have been verified to be reasonably good in terms of the technical soundness and economy. The results of the revised instrumentation program indicate that the three-dimensional excavation behaviour is complex and should be studied in more detail.  相似文献   

9.
10.
压气储能电站地下岩穴储气库围岩在循环运行工况下累积损伤效应明显。为研究大规模地下储气库围岩的累积损伤特性,基于损伤理论和FLAC3D软件平台,二次开发了适用于大规模地下储气库循环加卸载条件下的累积损伤分析程序,并对程序正确性进行了验证。在此基础上,研究了储气库截面型式、洞室埋深和运行下限压力等因素对储气库围岩累积损伤特性的影响。研究表明:①储气库截面型式、洞室埋深和运行下限压力都对储气库围岩变形参数损伤影响较显著,且储气库竖直方向损伤深度都大于水平方向损伤深度;②损伤区内围岩变形参数的损伤程度和损伤变量随着洞室埋深或运行下限压力的增加而减小;③对于相同截面型式的储气库,埋深和运行下限压力不同时,储气库围岩损伤区内同一测点位置的损伤变量或变形参数差值随着循环次数的增加逐渐增大。大规模地下储气库围岩累积损伤特性对全面分析储气库的安全稳定性不可以忽略。  相似文献   

11.
渗水量规模与空间分布特征是地下水封石油洞库建设中的关键问题。以中国首个大型地下水封石油洞库项目为背景,采用经验公式、有限元法计算和现场实测等方法研究了该洞库渗水量规模和空间分布特征。在大量现场岩体渗透性试验基础上,获得了可靠的岩体渗透系数,采用经验公式和数值计算等方法对洞库渗水量规模和空间分布特征进行了预测。根据现场揭露的渗水形态,统计了洞库渗水量规模,获得了渗水量空间分布特征,调查了渗水部位地质特征,据此提出了渗水量控制标准和有针对性的工程注浆防渗对策。通过对比预测与统计结果,讨论了渗水量规模预测方法适用性和渗水量空间分布特征离散性等问题。研究成果为提高中国地下水封石油洞库建设水平提供了理论支持,并为复杂条件下地下工程渗流特性研究提供了工程实例。  相似文献   

12.
水封性评价是地下水封石油洞库建设的关键科学问题。围绕地下石油洞库水封性评价,提出了地下水封石油洞库水封性评价的水文地质概念模型,总结了水封性评价中地下水、岩体性质与地质环境和洞库工程特征3个方面基础数据,分析了三者之间关系;分析了经验法、数值分析法和试验法三大类评价方法的特点和对应的适用范围,提出了评价方法"三适应"选用原则:评价方法与建设阶段、评价目标和参数要求相适应,提出了水封性评价流程,分析了不同评价阶段所应采用评价方法和重点的评价内容;以具体工程为背景,介绍了评价方法体系的应用情况,并着重介绍了经验法、裂隙网络法和现场试验法在水封性评价中的使用情况。研究成果对提高地下水封石油洞库水封性评价水平具有重要参考价值。  相似文献   

13.
Bulletin of Engineering Geology and the Environment - The southern section of the Zagros zone in southwestern Iran, a well-known sedimentary basin, was investigated to address two key questions:...  相似文献   

14.
 在建的白鹤滩地下洞室群规模巨大,具有“高边墙、大跨度、高地应力、复杂地质条件”的特点,在高应力开挖卸荷过程中,遭遇到延展性强且力学性质差的多条大型错动带的影响,使得含错动带岩体遭遇到不同程度的变形破坏问题。结合地质、施工、监测、测试及数值分析等资料,首先从错动带产状、成因和自身特点等方面对错动带的工程特性进行详细论述,然后对因错动带导致工程岩体结构变形失效或破坏的实例进行归纳总结,从结构控制因素上将含错动带岩体的破坏模式划分为塑性挤出型拉伸破坏、结构应力型塌方/掉块和剪切滑移型破坏3种类型;其次,研究分析各类含错动带岩体的破坏特征与机制,包括时空演化过程、形态特征、破坏规模等,初步揭示3种破坏模式对应的力学机制;最后,给出典型的含错动带岩体破坏模式分析预测和支护探讨实例,从而为白鹤滩地下厂房施工过程中含错动带岩体不稳定性问题的预测和调控提供借鉴。上述研究成果对于高应力条件下类似的地下洞室群含错动带岩体的稳定性研究具有重要的参考价值和指导意义。  相似文献   

15.
The limiting relationship is explored between underground opening span and required cover height for stability in blocky rock masses characterized by a network of horizontal bedding planes and vertical joints. Understanding this relationship is crucial for the design of mining excavations in karstic terrain as typically encountered in carbonate rock masses. We perform numerical analysis of multiple roof spans vs. cover height geometries using the DDA method to obtain the boundary curve between stable and unstable opening geometries. Our results indicate that for cavern spans of up to 18 m a low cover height vs. opening span ratio of h/B=0.33 is sufficient for stability. For spans greater than 18 m the demand for cover height rapidly increases and it appears to stabilize at h/B=1.0 for B=26 m and above.To validate our numerical analysis results, a unique case study is analyzed wherein a 40 m span karstic cavern, the Ayalon cave, has been preserved below an active open pit mine in central Israel with cover height of only 30 m, thus rendering the cave marginally stable according to our model prediction. Indeed there is ample evidence of partial collapse of the roof in the cave. The predictive capability of our model is further confirmed using two additional case studies in blocky rock masses, each of which possesses very different mechanical parameters such as intact rock strength, density, and deformability, suggesting that our model predictions remain valid as long the rock mass maintains a “blocky” structural configuration.  相似文献   

16.
地下水封石油洞库施工期监控量测与稳定性分析   总被引:1,自引:0,他引:1  
现场监控量测是确保大型地下工程建造和运营安全的重要手段。地下水封石油洞库在中国刚刚起步,不但缺少监测方案设计原则、实施方法等方面的规范标准,还缺少对相关监测数据分析方面的研究。以国内首个正在实施的大型地下水封石油洞库建设项目为依托,首先介绍了适用于大型地下水封石油洞库的监测原则与实施方法,该原则和方法充分考虑工程特征、地质情况和经济适用性;其次介绍了洞库监测结果:洞室大部分监测断面的洞周围岩收敛变形、拱顶沉降、内部位移和围岩松动圈分别处于4~8 mm、3~6 mm、4~8 mm和0.9~1.8 m区间范围内,锚杆应力和接触应力值大部分控制在50 MPa和0.5 MPa以内;而后分析了监测数据:1黄岛地下水封石油洞库围岩变形和支护受力较小、岩体稳定性良好、设计支护方案合理;2综合全面的监控量测结果可准确地反映地下水封石油洞库稳定性特征;3监测数据显示地下水封石油洞库稳定性表现出显著的时空演化特征。该研究可为中国地下水封石油洞库监测技术和稳定性评价研究提供重要依据。  相似文献   

17.
Bulletin of Engineering Geology and the Environment - The Wudongde Hydropower Station is constructed in layered strata that typically have steep dip angles. These features, together with the folds...  相似文献   

18.
Underground storage in unlined caverns is of great significance for storing energy resources. Construction of underground storage caverns is an extremely complex process, involving extensive multi-bench excavation and strong unloading. Excavation-induced damage of surrounding rock masses may lead to instability of underground storage caverns. The aim of this paper is to put forward a method by integrating numerical simulation and microseismic monitoring for evaluation of cavern stability. A novel numerical method called Continuous–Discontinuous Element Method (CDEM) is applied to simulate micro-cracks under excavation-induced unloading conditions. Meanwhile, a microseismic (MS) monitoring system is employed to monitor real-time MS events during construction of storage caverns. Numerical results are validated using the monitoring data from the MS monitoring system. The integrated method is proved to be successful in capturing micro-cracks in underground storage caverns. Local instability, potential unstable zones and micro-crack evolution are analyzed, and cracking mechanisms are also discussed.  相似文献   

19.
Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensured without using any steel lining or membrane.The main basis for the storage technology originates from the extensive hydropower development in Norway.As part of this activity,about 4500 km of tunnels and shafts have been excavated,and around 200 large powerhouse caverns have been constructed.The hydropower tunnels are mainly unlined,with hydrostatic water pressure on unlined rock of up to 1000 m.Some of the projects also include air cushion chambers with volumes of up to 1×105m3and air pressure up to 7.7 MPa.Many lessons which are valuable also for underground oil and gas storage have been learnt from these projects.For a storage project to become successful,systematic,well planned design and ground investigation procedures are crucial.The main steps of the design procedure are first to define the optimum location of the project,and then to optimize orientation,shape/geometry and dimensions of caverns and tunnels.As part of the procedure,ground investigations have to be carried out at several steps integrated with the progress of design.The investigation and design procedures,and the great significance of these for the project to become successful will be discussed.Case examples of oil and gas storage in unlined rock caverns are given,illustrating the relevancy of experience from high-pressure hydropower projects for planning and design of unlined caverns for oil and gas storage.  相似文献   

20.
The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China.Although several small underground water-sealed oil storage caverns have been built in China since the 1970 s,there is still a lack of experience for large-volume underground storage in complicated geological conditions.The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns,as well as the long-term stability.Although several large-scale underground oil storage projects are under construction at present in China,the design concepts and construction methods,especially for the water curtain system,are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas.The storage projects currently constructed in China have the specific features such as huge scale,large depth,multiple-level arrangement,high seepage pressure,complicated geological conditions,and high in situ stresses,which are the challenging issues for the stability of the storage caverns.Based on years' experiences obtained from the first large-scale(millions of cubic meters) underground water-sealed oil storage project in China,some design and operation problems related to water curtain system during project construction are discussed.The drawbacks and merits of the water curtain system are also presented.As an example,the conventional concept of "filling joints with water" is widely used in many cases,as a basic concept for the design of the water curtain system,but it is immature.In this paper,the advantages and disadvantages of the conventional concept are pointed out,with respect to the long-term stability as well as the safety of construction of storage caverns.Finally,new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号