首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The charge–discharge cycling behavior of the over-stoichiometric Laves phase alloy Zr0.75Ti0.25V0.9Mn0.4Cr0.3Ni1.4 as hydride electrode has been studied in a negative electrode-limited sealed cell. This cobalt-free alloy shows a maximum discharge capacity Cmax=373 mAh g−1 at 160 mA g−1 discharge current and a high rate dischargeability of 285 mAh g−1 at 1500 mA g−1 discharge rate. After 600 cycles the discharge capacity is 81% of the Cmax; the alloy also shows good charging efficiency (98%) and low temperature discharge rate.  相似文献   

2.
The ball-milled La2Mg17 + 200 wt% Ni composite is modified with graphite, aluminum, cobalt, titanium and nickel (weight ratio: 5 wt%) by ball-milling for 90 min. The microstructures of the obtained materials were examined by X-ray diffraction and SEM. The electrochemical properties of the obtained materials were measured and compared with those of the original ball-milled composite. It was found that the maximum discharge capacity and high-rate dischargeability of the composites after surface modification by graphite, Co and Ni increased to some extent due to the electrocatalytic activity of the coating element and the decrease of electrochemical reaction resistance on the alloy surface, but the effect of Al and Ti was just on the contrary. On the other hand, the cycling stability of the composites modified with Al, Ti and Ni all improved, and the modification with Ti was the most effective in improving the cycle life. But the modification with graphite, Co led to the worsening of the cycling stability to different degree, especially the modification with graphite.  相似文献   

3.
Graphite is an inexpensive carbon material, but its hydrogen absorbing performance has attracted little attention. In this paper, in order to lower the cost of nickel metal-hydride (Ni-MH) battery, graphite is used as a hydrogen absorbing material in its negative electrode. The results of charge-discharge tests show that the graphite electrode has poor electrochemical hydrogen absorbing performance. The capacity of the graphite/AB5 alloy (90 wt%) composite electrode is close to AB5 alloy (298 mAh/g), but it has higher charge-discharge polarization and difficulty in activation. When graphite is modified with metal nickel powder by a simple ball milling process, the capacity of the composite electrode reaches to 315 mAh/g and its activation is accelerated. The results of electrochemical impedance spectroscopy (EIS) tests show that hydrogen diffusion in the modified composite electrode is more rapid than in AB5 alloy, thereby resulting in lower charge-discharge polarization and better discharge performance at large currents.  相似文献   

4.
The effects of mechanical grinding with or without nickel powder on microstructure and electrochemical properties of Ce2Mg17 hydrogen storage alloy in 6 M KOH solution were investigated. The microstructure and electrochemical properties depend greatly on the amount of nickel powder introduced during mechanical grinding. For the alloy ball-milled with nickel powder, the more nickel powder added, the more advantageous it is for the formation of a homogeneous amorphous structure, and the larger discharge capacity obtained. After 90 h ball-milling, the Ce2Mg17 + 200 wt.% Ni composite exhibited a large discharge capacity of 1014 mAh g(Ce2Mg17)−1[338 mAh g(Ce2Mg17 + 200 wt.% Ni)−1] at 303 K. The improvement of electrochemical capacity can be attributed to the formation of a homogeneous amorphous structure as well as the modification of the surface state by Ni addition.  相似文献   

5.
Polycrystalline hydrogen storage alloys based on lanthanum (La) are commercially used as negative electrode materials for the nickel–metal hydride (Ni–MHx) batteries. In this paper, mechanical alloying (MA) was used to synthesize nanocrystalline LaNi4−xMn0.75Al0.25Cox (x=0, 0.25, 0.5, 0.75 and 1.0) hydrogen storage materials. XRD analysis showed that, after 30 h milling, the starting mixture of the elements decomposed into an amorphous phase. Following the annealing in high purity argon at 700 °C for 0.5 h, XRD confirmed the formation of the CaCu5-type structures with a crystallite sizes of about 25 nm. The nanocrystalline materials were used as negative electrodes for a Ni–MHx battery. Cobalt substituting nickel in LaNi4Mn0.75Al0.25 greatly improved the discharge capacity and cycle life of the LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacities up to 258 mA h g−1 (at 40 mA g−1 discharge current) were measured. Mechanical alloying is a suitable procedure to obtain LaNi5-type alloy powders for electrochemical energy storage.  相似文献   

6.
Mg2−xSnxNi (x = 0, 0.1, 0.3) alloys were synthesized by reactive ball milling under protective Ar atmosphere and liquid n-heptane. The microstructure and the morphology of the powders were determined by X-ray diffraction and scanning electron microscopy. The as-milled alloys consist of Mg2Ni nanocrystals with an average grain size in the range 3–7 nm, depending on the alloy composition. Sn containing phases were not detected even in the Sn-rich alloy. Obviously, Sn is dissolved in the Mg2Ni intermetallic compound. Gas phase sorption of hydrogen was not observed in the alloys containing Sn (Mg2−xSnxNi; x = 0.1, 0.3). It was suggested that Sn impedes the process of hydrogen molecules decomposition. The as-milled alloys absorbed reversibly hydrogen electrochemically. Mg2Ni alloy showed the highest discharge capacity of 300 mAh/g. The capacity of Mg1.9Sn0.1Ni and Mg1.7Sn0.3Ni was about 260 mAh/g. It was found that Sn improved the cycle life of the electrode.  相似文献   

7.
Mechanical properties of a defect-free bulk GaN single crystal has been studied by nanoindentation in the C (0001) surface. Our experiments provide consistent evaluations of Young's modulus (E = 320 GPa) measured with both Berkovich and spherical indenters. Additionally, Berkovich hardness (H = 17 GPa) and true hardness (Ht = 25 GPa) were determined. Pop-in events are confirmed to indicate the elastic–plastic transition of the material, and give also consistent yield (maximum) shear stress, τmax = 19 GPa, for both the indenters. To achieve these precise analyses, the effective curvature of the indenter was determined by the Hertz analysis of the contact between the indenter and a diamond crystal, in addition to the Oliver–Pharr method with a standard fused quartz.  相似文献   

8.
The hydrogen storage alloys MmNi3.55Mn0.4Al0.3Co0.75−xFex (x = 0.55 and 0.75) were used as negative electrodes in the Ni-MH accumulators. The chronopotentiommetry and the cyclic voltammetry were applied to characterize the electrochemical properties of these alloys. The obtained results showed that the substitution of the cobalt atoms by iron atoms has a good effect on the life cycle of the electrode. For the MmNi3.55Mn0.4Al0.3Co0.2Fe0.55 compound, the discharge capacity reaches its maximum of 210 mAh/g after 12 cycles and then decreases to 190 mAh/g after 30 charge–discharge cycles. However, for the MmNi3.55Mn0.4Al0.3Fe0.75 compound, the discharge capacity reaches its maximum of 200 mAh/g after 10 cycles and then decreases to 160 mAh/g after 30 cycles.

The diffusion behavior of hydrogen in the negative electrodes made from these alloys was characterized by cyclic voltammetry after few activation cycles. The values of the hydrogen coefficient in MmNi3.55Mn0.4Al0.3Co0.2Fe0.55 and MmNi3.55Mn0.4Al0.3Fe0.75 are, respectively, equal to 2.96 × 10−9 and 4.98 × 10−10 cm2 s−1. However, the values of the charge transfer coefficients are, respectively, equal to 0.33 and 0.3. These results showed that the substitution of cobalt by iron decreases the reversibility and the kinetic of the electrochemical reaction in these alloys.  相似文献   


9.
Spinel LiGaxMn2−xO4 (0 ≤ x ≤ 0.05) cathode materials with phase-pure particles and nano-sized distribution were synthesized by sol–gel method using triethanolamine as the chelating agent. The effects of heat treatment on the physicochemical properties of the spinel LiGaxMn2−xO4 powders were examined with thermogravimetric and differential thermal analysis (TG/DTA), powder X-ray diffraction (XRD) and scanning electron micrograph (SEM). The LiGaxMn2−xO4 (0 ≤ x ≤ 0.05) electrodes were characterized electrochemically by charge/discharge experiments under a current rate of 0.5C at 55 °C. Although the Ga-doped spinel electrode showed smaller initial discharge capacity, it exhibited better cycling performance than the undoped-LiMn2O4 electrode. The dQ/dV versus potential plots at 55 °C revealed that the improvement in cycling performance of the Ga-doped spinel electrode is attributed to stabilization of the spinel structure by the presence of gallium ion.  相似文献   

10.
The REFe6Sn4Ge2 (RE = Y, Gd–Er) compounds have been synthesized and studied by powder X-ray diffraction and magnetisation measurements. These compounds crystallize in the hexagonal HfFe6Ge6 structure although the parent ternary compounds REFe6X6 (X = Ge, Sn) display more complicated orthorhombic crystal structure. This evolution is discussed and interpreted on the basis of the relaxation of some RE–X contacts in the quaternary compounds. The iron sublattice order antiferromagnetically above room temperature (554 ≤ TN ≤ 560 K) while the paramagnetic RE compounds display a second transition at low temperature (7.3 ≤ Tt ≤ 42.7 K). The magnetisation versus field curves display a metamagnetic behaviour at 4.2 K. The corresponding value of the magnetisation suggests a non-collinear ordering of the RE sublattice.  相似文献   

11.
采用在CeMg12中添加镍粉球磨制备非晶态合金,并研究化学镀表面包覆Ni对其电化学性能的影响.结果表明,非晶态CeMg12具有很高的电化学放电容量,CeMg12+200%Ni(质量分数)球磨50 h后复合电极材料电化学容量达到1209.6 mAh/g,但是电化学循环稳定性较差,10次循环保持率为37.26%.通过化学镀镍进行表面包覆能明显提高合金的综合电化学性能.化学镀表面包覆Ni后,合金10个循环的保持率上升到69.67%:同时由于添加的Ni和包覆Ni的共同催化作用,合金高倍率性能也得到了相应的提高,HRD900由原来的54.2%提升到72.4%;但是由于化学镀过程中部分合金被氧化,使复合合金的最大放电容量略有下降.  相似文献   

12.
为进一步改善A2B7型贮氢合金电极的电化学性能,以La0.75Mg0.25Ni3.44Al0.06为研究对象,用未包覆合金粉末和球磨包覆镍处理不同时间的合金粉末制备合金电极,研究了合金电极的电化学性能和动力学性能.结果表明:合金粉末经球磨包覆镍处理后制得的合金电极,其活化性能及循环稳定性有所提高;球磨包覆镍处理可提高合金电极的交换电流密度J0,改善其电催化活性,降低电化学阻抗,加快电荷迁移速率,从而提高合金电极的高倍率放电能力.  相似文献   

13.
Nanocrystalline and amorphous NdMg_(12)-type NdMg_(11)Ni+x wt% Ni( x = 100, 200) alloys were successfully prepared through ball milling(BM). The microstructures and electrochemical properties were systematically studied to get a more comprehensive understanding of the sample alloys. The maximum discharging capacity could be obtained at only two cycles, indicating that as-milled alloys have superior activation capability. The more the Ni content, the better the electrochemical properties of the as-milled samples. To be specific, the discharge capacities of x = 100 and x = 200(BM 20 h) samples are 128.2 and 1030.6 mAh/g at 60 mAh/g current density, respectively, revealing that enhancement of Ni content could significantly improve the discharging capacities of the samples. Additionally, milling duration obviously influences the electrochemical properties of the samples. The discharging capacity always rises with milling duration prolonging for the x = 100 sample,but that of the( x = 200) sample shows a trend of first augment and then decrease. The cycling stability of the( x = 100) alloy clearly decreases with extending milling duration, whereas that of the( x = 200) alloy first declines and then augments under the same conditions. In addition, the high rate discharge(HRD) abilities of the sample display the maximal values as milling duration changes. The HRD(HRD = C_(300)/C_(60)× 100%) values of the as-milled alloys( x = 100, 200) are 80.24% and 85.17%,respectively.  相似文献   

14.
In this paper, phase constituent, hydrogen storage characteristics and electrochemical performances of composite TiCr1.8 + X wt.% LaNi5 alloys with different stoichiometry were investigated. X-ray diffraction (XRD) tests reveal that these alloys still remain Laves phase constituent despite the increase of LaNi5 content in alloys. Electrochemistry performance is improved whereas the maximum hydrogen storage capacity of pressure composition temperatures (PCT) test slightly decreases at the same time. One kind of alloy with capacity up to 55 mAh/g has been developed.  相似文献   

15.
The electrode alloys Mg2−xZrxNi (x = 0, 0.15, 0.3, 0.45 and 0.6) were prepared by mechanical alloying (MA). Mg in the alloy was partially substituted with Zr in order to improve the electrochemical characteristics of the Mg2Ni-type alloy. The microstructures and the electrochemical characteristics of the experimental alloys were measured systemically. The effects of substituting Mg with Zr and MA technique on the microstructures and electrochemical performances of the alloys were investigated in detail. The results obtained by XRD, SEM and TEM show that the substitution of Zr is favourable for the formation of an amorphous phase. For a fixed milling time, the amorphous phase in the alloy grows with increasing Zr content. The electrochemical measurement indicates that the substitution of Zr can dramatically enhance the discharge capacity with preferable cycle stability, and it markedly improves the discharge voltage characteristic of the alloys. For x ≤ 0.3, the discharge capacity of the alloys monotonically increases with milling time. But for x > 0.3, it has a maximum value with the change of milling time.  相似文献   

16.
The possibility of providing TiC–Al2O3 nanocomposite as a useful composite from low-cost raw materials has been investigated. Impure Ti chips were placed in a high energy ball mill with carbon black and aluminum powder and sampled after different times. XRD analysis showed that TiC has been synthesized after 10 h of milling. It could be observed from the width of XRD patterns’ peaks that the size of produced TiC crystallites is in the order of nanometer. In order to forming of TiC–Al2O3 composite, heat treatment was performed in different temperatures. Investigations have revealed that formation temperature of TiC as the dominant phase decreased for the milled specimens during heat treatment, also nanocrystalline TiC–Al2O3 composite was formed in this situation. Furthermore milling led to increase of strain and decrease of TiC lattice parameter while during heat treatment nanocrystalline grains grow up and strain decreases.  相似文献   

17.
为提高新型AB3型储氢合金La0.94Mg0.06Ni3.49Co0.73Mn0.12Al0.20的电化学性能,将球磨法制备的Ni-B-C粉末按不同重量比添加到合金中。采用X-射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)分析合金的相结构和表面形貌,添加Ni-B-C粉末后,合金相结构没有变化,仍由LaNi5相和La2Ni7相两个相组成,但合金表面出现了细小颗粒。添加Ni-B-C粉末后,合金电极的最大放电容量和放电容量保持率均提高。当添加重量百分比为10%的Ni-B-C粉末后,电极的最大放电容量从346 mAh/g增加到363 mAh/g,50个循环后的放电容量保持率从70%提高到77%,交换电流密度I0与极限电流密度IL分别为106 mA/g和987 mA/g。动电位极化测试表明,电极的抗腐蚀能力也有所增强。研究结果表明,Ni-B-C可以提高AB3型储氢合金的综合电化学性能。  相似文献   

18.
Different compositions in two solid solutions, A2(Ti(1 − y)Zry)2O7 (A = Gd3+, Y3+), with high oxygen ion conductivity, have been successfully prepared at room temperature via mechano-chemical synthesis. Stoichiometric mixtures of the constituent oxides were milled in a planetary ball mill by using zirconia vials and balls. Chemical changes in the powder mixtures as a function of composition and milling time were followed by using X-ray diffraction showing that in all cases and after milling for 19 h, the powders consisted of a single phase. Powders were also examined by scanning electron microscopy (SEM) finding out that they basically consist of sub-micron size agglomerates and aggregates of nanoparticles.  相似文献   

19.
The low-Co content La0.80−xNdxMg0.20Ni3.20Co0.20Al0.20 (x = 0.20, 0.30, 0.40, 0.50, 0.60) alloys were prepared by inductive melting and the effect of Nd content on the electrochemical properties was investigated. XRD shows that the alloys consist mainly of LaNi5 phase, La2Ni7 phase and minor LaNi3 phase. The electrochemical P–C–T test shows hydrogen storage capacity increases first and then decreases with increasing x, which is also testified by the electrochemical measurement that the maximum discharge capacity increases from 290 mAh/g (x = 0.20) to 374 mAh/g (x = 0.30), and then decreases to 338 mAh/g (x = 0.60). The electrochemical kinetics test shows exchange current density I0 increases with x increasing from 0.20 to 0.50 followed by a decrease for x = 0.60, and hydrogen diffusion coefficient D increases with increasing x. Accordingly high rate dischargeability increases with a slight decrease at x = 0.60 and the low temperature dischargeability increases with increase in Nd content. When x is 0.50, the alloy exhibits a better cycling stability.  相似文献   

20.
Mg2Ni alloy prepared by powder sintering was chemically coated with 10% nickel by weight. The effects of the nickel coating on the surface appearance, the structure of the alloy and the electrode characteristics were investigated. The discharge capacity and cycle life of the nickel-coated alloy electrode were greatly increased in comparison with values for the bare alloy because of the changed phase structure and surface properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号