首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a conceptual outer approximation algorithm for dealing with the semi-infinite nondifferentiable programming in which functions are locally Lipschitzian. By weakening the restriction on the family of functions for a parametric programming, we answer a question proposed in [1].  相似文献   

2.
An interior point algorithm for semi-infinite linear programming   总被引:3,自引:0,他引:3  
We consider the generalization of a variant of Karmarkar's algorithm to semi-infinite programming. The extension of interior point methods to infinite-dimensional linear programming is discussed and an algorithm is derived. An implementation of the algorithm for a class of semi-infinite linear programs is described and the results of a number of test problems are given. We pay particular attention to the problem of Chebyshev approximation. Some further results are given for an implementation of the algorithm applied to a discretization of the semi-infinite linear program, and a convergence proof is given in this case.  相似文献   

3.
徐庆娟  简金宝 《数学杂志》2014,34(6):1155-1162
本文研究了求解半无限规划离散化问题(P)的一个新的算法.利用序列二次规划(SQP)两阶段方法和约束指标集的修正技术,提出了求解(P)的一个两阶段SQP算法.算法结构简单,搜索方向的计算成本较低.在适当的条件下,证明了算法具有全局收敛性.数值试验结果表明算法是有效的.推广了文献[4]中求解(P)的算法.  相似文献   

4.
In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.  相似文献   

5.
We present in this paper a numerical method for solving non-strictly-convex quadratic semi-infinite programming including linear semi-infinite programming. The proposed method transforms the problem into a series of strictly convex quadratic semi-infinite programming problems. Several convergence results and a numerical experiment are given.  相似文献   

6.
We present in this paper a numerical method for solving non-strictly-convex quadratic semi-infinite programming including linear semi-infinite programming. The proposed method transforms the problem into a series of strictly convex quadratic semi-infinite programming problems. Several convergence results and a numerical experiment are given.  相似文献   

7.
An algorithm for linear semi-infinite programming is presented which accelerates the convergence of the central cutting plane algorithm first proposed in [4]. Compared with other algorithms, the algorithm in [4] has the advantage of being applicable under mild conditions and of providing feasible solutions. However its convergence has been shown to be rather slow in practical instances. The algorithm proposed in this paper introduces a simple acceleration scheme which gives faster convergence, as confirmed by several examples, as well as an interval of prefixed length containing the optimum value. It is also shown that the algorithm provides a solution of the dual problem and that it can be used for convex semi-infinite programming too.Mathematics Subject Classification (1991): 90C05, 90C34, 65K05, 90C51Acknowledgments. The author whishes to thank the three anonymous referees and an associate editor for many useful comments and valuable suggestions.  相似文献   

8.
The so called dual parameterization method for quadratic semi-infinite programming (SIP) problems is developed recently. A dual parameterization algorithm is also proposed for numerical solution of such problems. In this paper, we present and improved adaptive algorithm for quadratic SIP problems with positive definite objective and multiple linear infinite constraints. In each iteration of the new algorithm, only a quadratic programming problem with a limited dimension and a limited number of constraints is required to be solved. Furthermore, convergence result is given. The efficiency of the new algorithm is shown by solving a number of numerical examples.  相似文献   

9.
《Optimization》2012,61(6):713-726
We describe a reduction algorithm for solving semi-infinite programming problems. The proposed algorithm uses the simulated annealing method equipped with a function stretching as a multi-local procedure, and a penalty technique for the finite optimization process. An exponential penalty merit function is reduced along each search direction to ensure convergence from any starting point. Our preliminary numerical results seem to show that the algorithm is very promising in practice.  相似文献   

10.
This paper deals with the design of linear-phase finite impulse response (FIR) digital filters using weighted peak-constrained least-squares (PCLS) optimization. The PCLS error design problem is formulated as a quadratically constrained quadratic semi-infinite programming problem. An exchange algorithm with a new exchange rule is proposed to solve the problem. The algorithm provides the approximate optimal solution after a finite number of iterations. In particular, the subproblem solved at each iteration is a quadratically constrained quadratic programming. We can rewrite it as a conic optimization problem solvable in polynomial time. For illustration, numerical examples are solved using the proposed algorithm.  相似文献   

11.
In this paper, we give an application ofUV-decomposition method of convex programming to multiobjective programming, and offer a new algorithm for solving semi-infinite multiobjective programming. Finally, the superlinear convergence of the algorithm is proved.  相似文献   

12.
In this paper, we develop two discretization algorithms with a cutting plane scheme for solving combined semi-infinite and semi-definite programming problems, i.e., a general algorithm when the parameter set is a compact set and a typical algorithm when the parameter set is a box set in the m-dimensional space. We prove that the accumulation point of the sequence points generated by the two algorithms is an optimal solution of the combined semi-infinite and semi-definite programming problem under suitable assumption conditions. Two examples are given to illustrate the effectiveness of the typical algorithm.  相似文献   

13.
We propose an algorithm for the constrained continuous minimax problem. The algorithm uses a quasi-Newton search direction, based on subgradient information, conditional on maximizers. The initial problem is transformed to an equivalent equality constrained problem, where the logarithmic barrier function is used to ensure feasibility. In the case of multiple maximizers, the algorithm adopts semi-infinite programming iterations toward epiconvergence. Satisfaction of the equality constraints is ensured by an adaptive quadratic penalty function. The algorithm is augmented by a discrete minimax procedure to compute the semi-infinite programming steps and ensure overall progress when required by the adaptive penalty procedure. Progress toward the solution is maintained using merit functions.  相似文献   

14.
讨论了一类线性半无限最优规划模型的求解算法.采用松弛方法解其系列子问题LP(T_k)及DLP(T_k),基于松弛策略和在适当的假设条件下,提出了一个我们称之为显式算法的新型算法.新算法的主要改进之处是算法在每一步迭代计算时,允许丢弃一些不必要的约束.在这种方式下,算法避免了求解系列太大规模的子问题.最后,基于提出的显式修正算法,并与传统割平面方法和已有文献中的松弛修正算法、对同一问题作了初步的数值比较实验.  相似文献   

15.
In this paper, we analyze the outer approximation property of the algorithm for generalized semi-infinite programming from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). A simple bound on the regularization error is found and used to formulate a feasible numerical method for generalized semi-infinite programming with convex lower-level problems. That is, all iterates of the numerical method are feasible points of the original optimization problem. The new method has the same computational cost as the original algorithm from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). We also discuss the merits of this approach for the adaptive convexification algorithm, a feasible point method for standard semi-infinite programming from Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007).  相似文献   

16.
This paper proposes a new algorithm for solving a type of complicated optimal power flow (OPF) problems in power systems, i.e., OPF problems with transient stability constraints (OTS). The OTS is converted into a semi-infinite programming (SIP) via some suitable function analysis. Then based on the KKT system of the reformulated SIP, a smoothing quasi-Newton algorithm is presented in which the numerical integration is used. The convergence of the algorithm is established. An OTS problem in power system is tested, which shows that the proposed algorithm is promising.  相似文献   

17.
This paper studies how to solve semi-infinite polynomial programming (SIPP) problems by semidefinite relaxation methods. We first recall two SDP relaxation methods for solving polynomial optimization problems with finitely many constraints. Then we propose an exchange algorithm with SDP relaxations to solve SIPP problems with compact index set. At last, we extend the proposed method to SIPP problems with noncompact index set via homogenization. Numerical results show that the algorithm is efficient in practice.  相似文献   

18.
This work considers the solution of the Vasicek-type forward interest rate model. A deterministic process is adopted to model the random behavior of interest rate variation as a deterministic perturbation. It shows that the solution of the Vasicek-type forward interest rate model can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The features of the proposed method are tested using a set of real data and compared with some commonly used spline fitting methods.  相似文献   

19.
A projected lagrangian algorithm for semi-infinite programming   总被引:8,自引:0,他引:8  
A globally convergent algorithm is presented for the solution of a wide class of semi-infinite programming problems. The method is based on the solution of a sequence of equality constrained quadratic programming problems, and usually has a second order convergence rate. Numerical results illustrating the method are given.  相似文献   

20.
Consider the class of linear-quadratic (LQ) optimal control problems with continuous linear state constraints, that is, constraints imposed on every instant of the time horizon. This class of problems is known to be difficult to solve numerically. In this paper, a computational method based on a semi-infinite programming approach is given. The LQ optimal control problem is formulated as a positive-quadratic infinite programming problem. This can be done by considering the control as the decision variable, while taking the state as a function of the control. After parametrizing the decision variable, an approximate quadratic semi-infinite programming problem is obtained. It is shown that, as we refine the parametrization, the solution sequence of the approximate problems converges to the solution of the infinite programming problem (hence, to the solution of the original optimal control problem). Numerically, the semi-infinite programming problems obtained above can be solved efficiently using an algorithm based on a dual parametrization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号