首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
热轧钢/铝复合板结合强度及界面的研究   总被引:2,自引:0,他引:2  
采用弯曲实验、金相和扫描电子显微镜,研究了轧制预热温度、变形量和轧后退火制度对热轧钢/铝复合板的结合强度和界面的影响。结果表明:预热温度低于400℃时,弯曲次数随预热温度的升高而增加,之后又逐渐减少,预热温度在400℃时的结合界面好且结合强度最大;轧制压下量越大,弯曲次数越大,结合界面和结合强度越好,当压下量为20%~30%时,弯曲次数随压下量的增加比较缓慢,当压下量>30%时,弯曲次数随压下量的增加而快速增加;经600℃×1h退火时,热轧钢/铝复合板的弯曲次数可达11次,结合界面更好,强度更高。  相似文献   

2.
针对镁/铝板材轧制复合在轧后容易出现弯曲问题,提出了蛇形轧制复合工艺,以达到降低轧后弯曲曲率并提高界面结合强度的目的。利用ANSYS LS-DYNA有限元软件,研究了蛇形轧制复合过程中不同错位量、异速比、压下量、层厚比及轧制温度对轧后复合板的弯曲曲率的影响规律,并开展轧制复合实验,验证了有限元计算结果的准确性。结果表明,与异步轧制相比,蛇形轧制可有效降低轧后复合板弯曲曲率。相同轧制条件下,异步轧制轧后弯曲曲率随着异速比的增大而增大,随着压下量及层厚比的增大而减小。蛇形轧制错位量可对轧后弯曲抑制产生明显的效果,在一定范围内,复合板的弯曲曲率随错位量的增大而减小。当初始板厚为50 mm、层厚比为2:3、压下量为30 mm、轧制温度为400℃、异速比为1.05和错位量为30 mm时,轧后复合板接近平直。  相似文献   

3.
采用热轧法制备了钢/铝复合板,研究了轧制温度、保温时间和压下量对钢/铝板力学性能的影响规律。结果表明,2道次轧制时,低温长时间或高温短时间热处理能提高板材抗弯变形性能;钢/铝复合板的抗弯循环次数随压下量的增大先增大后减小。当压下量为85%时,90°弯折循环45次界面不开裂,最大伸长率达21%;1道次轧制时,90°弯折循环不到20次,伸长率不到14%。最佳轧制工艺为:第2道次550℃保温15 min,85%压下量。  相似文献   

4.
《塑性工程学报》2015,(5):82-87
以4A60铝合金和08Al低碳钢冷轧复合板为研究对象,通过变形区剥离、扫描实验,研究了复合变形区金属流动规律、压下量和初始厚度对界面结合效果的影响。结果表明,随着压下量的增加,变形区铝-钢厚度比先减小后增大,最后达到稳定,且增加压下量可提高金属间界面结合强度;初始铝层越薄,复合压下量最小值越小,且在压下量相同时,其结合强度越高。初始铝层厚度和压下量通过影响钢表面氧化膜层的破裂程度来影响界面结合。铝-钢界面结合强度与钢层表面氧化膜破裂率φ相关,当φ21%时,铝-钢金属间发生初始结合。  相似文献   

5.
提出了一种移动感应加热异温轧制制备钛/铝复合板的方法,应用电磁感应单独加热移动的钛板,与室温铝板轧制复合,实现钛和铝的协调变形,提高了复合板的结合强度。采用ANSYS有限元软件模拟移动感应加热过程中钛板的温度变化过程,确保在轧辊入口位置时,钛板沿宽度方向温度分布均匀。基于有限元模拟结果确定钛板移动速度和感应加热参数,并进行了移动感应加热和轧制复合实验,研究了不同压下率对于钛/铝复合板协调变形和结合强度的影响。结果表明:随着压下率的增加,钛/铝变形率差值先减小后增大,当轧制压下率为39.4%时,钛/铝轧制变形率基本一致,轧后复合板平直,界面剪切强度最高,达到124.6 MPa,剪切断裂发生在铝基体上。  相似文献   

6.
通过室温冷轧制备出了1060Al/AlSn20Cu/1060Al/钢多层复合板材,并探索了轧制压下量对复合板微观组织和力学性能的影响。利用扫描电子显微镜和电子背散射衍射(EBSD)对复合板微观组织进行表征,通过拉伸试验测量了复合板力学性能。复合板的初始轧制压下量为17%,最小稳定压下量为40%。结果表明,随着轧制压下量的增加,铝合金层中锡相和钢中组织沿轧制方向被拉长,但是纯铝层呈现出等轴晶。随着轧制压下量的增大,复合板抗拉伸强度和界面结合强度增加,而延伸率下降。AlSn20Cu合金层的断裂主要跟其中的锡相有关。  相似文献   

7.
采取只加热钛层的方法实现协调变形轧制制备钛/铝复合板,通过剪切实验、金相显微镜、扫描电子显微镜,研究压下率、钛层加热温度对钛/铝复合板的厚比分配、剪切强度和界面的影响。结果表明:随着钛层温度的升高和总轧制压下率的增大,钛铝复合板的钛层和铝层变形率差值逐渐减小;当温度为800℃,轧制压下率为50%时,铝层和钛层的变形率分别达到了51.4%和48.6%,钛铝复合板变形趋于协调。钛与铝的结合界面剪切强度达到107.5 MPa,基本接近铝基体的剪切强度。加热过程中钛板表面会产生氧化层,但是在较大轧制压下率下,钛的氧化层会撕裂,金属铝挤入裂缝与新鲜钛金属接触,在强大压力和高温作用下,钛、铝元素相互扩散从而达到牢固的冶金结合。  相似文献   

8.
采用热轧+温轧方法制备Cu/Mo/Cu复合板,研究轧制工艺对复合板结合界面及组元厚度配比的影响。结果表明:经过轧制变形后,铜钼界面实现紧密结合且结合机制为齿状啮合,铜层外表面和靠近界面层的晶粒比中部细小;随着变形量的增加,铜层等轴状晶粒沿轧制方向被拉伸,界面结合效果明显改善,且由齿状变得较为平直。分析组元厚度配比,铜层变形量较钼层的大,随着总压下量的增加,组元压下率的差值减小,变形量逐渐趋于一致;首次提出了Cu/Mo/Cu三层复合板厚度配比的关系,为实际选择原料提供依据  相似文献   

9.
基于复合板结合强度计算模型,用数值模拟和实验研究了轧制速度对铜/铝复合板结合强度的影响。结果表明,随着轧制速度的增加,组元金属的应变均小幅度增加,变形区正应力峰值则基本保持不变。轧制速度为125 mm/s时,铜铝结合界面上节点速度的一致性较好,在不考虑金属复合时间对结合强度影响时,轧制速度125 mm/s最有利于组元金属的结合。随着轧制速度的增加,铜/铝复合板的结合强度先增大后减小,且轧制速度为125 mm/s时,结合强度达到最高。  相似文献   

10.
对不同异步速比条件下铜/铝复合板界面结合强度和剥离形貌进行了研究,分析了轧制变形区界面正应力、剪切应力以及等效应变对复合板结合强度的影响机制。结果表明:随异步速比的增加,铜/铝复合板界面的剥离强度先增大后减小,且在异步速比为1. 15时达到最大值34. 2 N·mm-1。从剥离形貌来看,异步速比为1. 15时复合板剥离界面上黏着的铝脊数量和面积达到最大,且异步速比大于1. 15时,剥离面黏着的铝屑明显增加。模拟结果分析发现:随着异步速比的增加,界面处的等效应变和剪切应力均逐渐增大,可有效促进金属间的结合效果。当异步速比大于1. 15时,轧制变形区出口侧的剪切应力急剧上升,对结合界面造成一定的破坏作用,因此复合板的剥离强度随异步速比的增加,呈先上升后迅速下降的变化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号