首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
以煤焦油各窄馏分占原料油的百分比及沥青质含量为依据,确定了煤焦油固定床加氢原料的切割点,并以切割后的煤焦油轻组分为原料,在3 ×400 mL固定床加氢中试装置上进行加氢改质,考察了催化剂床层温度和进料空速对加氢效果的影响.实验表明:460℃为该煤焦油合适的固定床进料切割点,煤焦油初馏点~460℃馏分固定床加氢最佳的工艺条件为:保护剂床层温度260℃、精制催化剂床层温度380℃、芳烃饱和催化剂床层温度380℃,空速为0.8h-1.在此工艺条件下,加氢改质后油品密度、残炭、杂原子含量显著降低,H/C提高.产品石脑油、柴油、蜡油收率依次为25.9%,63.2%,10.9%,石脑油芳烃含量高,可作为重整原料,柴油十六烷值高,硫、氮含量低,可作为优质的柴油调合油,蜡油精制后作为润滑油基础油.  相似文献   

2.
高温煤焦油加氢制取汽油和柴油   总被引:17,自引:4,他引:13  
以山西某焦化厂高温煤焦油为原料,采用加氢保护剂、加氢脱金属催化剂、加氢精制催化剂、缓和加氢裂化催化剂组成的级配方式在小型加氢评价装置上进行加氢工艺研究,并在系统压力12.0M Pa条件下考察了反应温度、氢与油体积比、液态空速对高温煤焦油加氢的影响。实验结果表明,在系统压力12.0M Pa、温度380℃、氢与油体积比1 800∶1、液态空速0.28h-1的条件下对高温煤焦油进行加氢改质,可以实现煤焦油的轻质化,汽油馏分(初馏点~200℃)、柴油馏分(200~360℃)、加氢尾油(高于360℃)分别占产物质量的17.69%,62.04%,20.27%。加氢尾油可作为优质的催化裂化或加氢裂化掺炼原料。  相似文献   

3.
在固定床加氢中试装置上,以不同性质的混合柴油为原料,在氢分压75 MPa、体积空速10 h-1、氢/油体积比 800、反应温度350~370℃的条件下,进行柴油中压加氢改质实验,考察了原料性质对柴油加氢改质反应中芳烃饱和率、多环环烷烃开环率和断链率的影响。结果表明,原料芳烃含量较低时,更有利于芳烃饱和反应以及多环环烷烃开环反应的进行;断链反应使得产物中柴油馏分的链烷烃量高于原料。对于同一种原料,随反应温度增加,芳烃饱和率的增幅较为缓和,而多环环烷烃开环率显著增加;原料中芳烃含量越低,多环环烷烃开环率随反应温度的变化越显著。  相似文献   

4.
煤炭直接液化油品加氢改质中试研究   总被引:1,自引:0,他引:1  
 进行了煤直接液化油品的提质加工加氢改质工艺中试研究。中试装置规模为340kg/h进料,反应器绝热设计。结果表明,采用RGC-1/RNC-2/RCC-1催化剂组合,在高分压力约13.0MPa、精制反应器和改质反应器加权平均温度分别为351.3和362.6 ℃的反应条件下,几乎可以全部脱除煤直接液化油中的S、N、O等杂质,同时绝大部分二环以上芳烃被加氢饱和,加氢精制段对芳烃加氢饱和起主要作用。此外,对煤直接液化油品加氢改质试验进行了物料衡算,详尽分析了石脑油和柴油馏分性质,考察了添加十六烷值改进剂对加氢改质柴油馏分的作用。  相似文献   

5.
对新疆胜沃产的快速热解全馏分煤焦油进行了性质分析,并以其为原料考察了加氢工艺条件对产物分布的影响。结果表明:该煤焦油中金属、硫、残炭、沥青质以及轻组分含量均较低,氮含量较高; 经单段固定床加氢处理,在反应温度400℃、氢分压12 MPa、氢油体积比1 000、液时空速1.0 h-1的反应条件下,煤焦油中大于500℃的重馏分全部转化,轻油馏分(汽油馏分、柴油馏分)收率达到70.15%,且汽油馏分可作为重整原料或作为汽油调和组分,柴油馏分中芳烃含量较高,不宜直接作为柴油调和组分。  相似文献   

6.
以加氢精制、加氢改质以及混兑催化裂化柴油(LCO)加氢改质3种加氢技术路线加工渣油加氢柴油,考察了反应温度、系统压力以及体积空速对产物分布和产品质量的影响。结果表明:加氢精制路线所得精制柴油十六烷指数仅提升2.25单位,技术竞争力较差;加氢改质温度为375℃时可得到42%的重石脑油,其芳烃潜含量为54%,是优质的重整原料,同时柴油产品质量提升明显,满足国VI柴油标准;渣油加氢柴油混兑LCO加氢改质所需温度低、处理量大,是高附加值利用LCO及渣油加氢柴油的加氢技术路线。  相似文献   

7.
以硫化态Co-Mo/Al2O3为催化剂,利用固定床小型加氢反应装置,考察了反应温度、反应压力、体积空速、氢/油体积比对抚顺页岩油柴油馏分加氢精制效果的影响。结果表明,升高反应温度、增大反应压力、降低体积空速,有利于抚顺页岩油柴油馏分的脱硫、脱氮和烯烃饱和,特别是可明显提高加氢脱氮效果,而氢/油体积比的改变对产物性质影响相对较小。在反应温度380℃、反应压力7MPa、体积空速0.5h-1、氢/油体积比600的条件下,抚顺页岩油柴油馏分加氢精制后,其杂原子和不饱和烃含量低、密度小、芳香烃含量少,可作为优质清洁柴油直接使用。  相似文献   

8.
抚顺页岩油柴油馏分加氢精制的工艺条件   总被引:1,自引:1,他引:0  
以硫化态Co-Mo/Al2O3为催化剂,利用固定床小型加氢反应装置,考察了反应温度、反应压力、体积空速、氢/油体积比对抚顺页岩油柴油馏分加氢精制效果的影响。结果表明,升高反应温度、增大反应压力、降低体积空速,有利于抚顺页岩油柴油馏分的脱硫、脱氮和烯烃饱和,特别是可明显提高加氢脱氮效果,而氢/油体积比的改变对产物性质影响相对较小。在反应温度380℃、反应压力7MPa、体积空速0.5h-1、氢/油体积比600的条件下,抚顺页岩油柴油馏分加氢精制后,其杂原子和不饱和烃含量低、密度小、芳香烃含量少,可作为优质清洁柴油直接使用。  相似文献   

9.
以中低温煤焦油为原料,先进行高压釜模拟悬浮床加氢预处理,再进行固定床加氢处理,对所得液体产物进行分析。结果表明:中低温煤焦油经悬浮床加氢预处理后,轻质化程度显著提高,再经固定床加氢处理后,所得汽油馏分中C_6~C_9芳烃质量分数达到32.72%,芳烃潜含量为66.15%,适于生产芳烃或用作高辛烷值汽油调和组分;柴油馏分中总芳烃、单环芳烃和双环芳烃质量分数分别为90.9%,46.9%,36.9%,适于进一步加氢改质最大化生产化工原料。  相似文献   

10.
根据炼油-化工型炼油厂优化加工方案的需要,针对劣质量油催化裂化和焦化等二次加工柴油开发了一种加氢改质技术。该工艺使用含沸石催化剂;具有选择性破坏能力的裂化催化剂,在6~8MPa中等压力下,以重油催化裂化柴油与轻质VGO混合油为原料,控制适宜裂解深度,可以显著地改进柴油质量,十六烷值与安定性都得到明显提高,同时,还得到了一部分高芳烃潜含量的优质重整原料,加氢改质改质尾油芳烃含量很低,是蒸气裂解制乙烯  相似文献   

11.
低、中、高压催化柴油加氢工艺探讨   总被引:3,自引:0,他引:3  
许雪茹 《齐鲁石油化工》2005,33(2):83-84,87
为适应清洁燃料的生产,对催化柴油低压加氢精制、中压加氢改质、高压加氢裂化进行了对比试验,考查了3种加氢工艺对催化柴油的硫含量、氮含量、十六烷值的影响。根据反应压力对产品质量的影响,建议不同性质的催化柴油可采用不同的加氢处理工艺,为炼厂节省费用支出提供了新思路。  相似文献   

12.
在中型试验装置上,以煤焦油全馏分为原料,采用加氢精制-加氢裂化两段法工艺技术路线,对煤焦油原料进行加氢提质,以生产清洁燃料油。考察了反应温度、压力、空速和氢油比对加氢精制生成油性质的影响规律;并对加氢精制尾油开展了加氢裂化试验,确定了适宜的加氢裂化工艺条件。结果表明:在适宜的工艺条件下,石脑油和柴油馏分收率超过95%,其中柴油馏分硫质量分数低于10 ?g/g、十六烷值接近45。催化剂2 600 h运转稳定性考察期间,产品性质保持稳定。本技术实现了煤焦油轻质化、清洁化利用的目的,具备工业长周期运转的条件。  相似文献   

13.
介绍了中国石油化工股份有限公司洛阳分公司2.2 Mt/a蜡油加氢处理装置催化剂失活现象,从催化剂组成和操作因素两方面对床层温升下降和催化剂活性下降原因进行了分析,发现再生剂FF-24比例较大,约为59.8%;原料油组分重,终馏点700℃以上;脱沥青油品质差;床层结焦等都是影响催化剂失活的因素,最主要的原因是再生剂比例大和原料油组分重。催化剂失活后,装置将反应温度从360℃提高至385℃,气油比从780提至830,但均达不到理想效果,因此采取更换催化剂解决此问题,并将换下的催化剂送中国石油化工股份有限公司抚顺石油化工研究院(FRIPP)分析。FRIPP分析催化剂失活原因为反应器入口温度低,再生剂FF-18无使用价值,原料油品质差。  相似文献   

14.
介绍柴油超深度加氢脱硫催化剂 FHUDS-6 在国内某大型炼油厂4.1Mt/a柴油加氢装置上的首次工业应用情况,并对使用该催化剂的满负荷标定数据进行分析。结果表明,在催化裂化柴油比例高达11%、床层平均反应温度 352 ℃、空速 2.53 h-1、氢分压 6.15 MPa、氢油体积比 254.3 的工况下,FHUDS-6 催化剂具有较高的脱硫、改质活性,十六烷值提高幅度达 5.7 个单位,脱硫率达 98.02%,精制柴油产品质量可以满足国Ⅲ柴油排放标准要求。  相似文献   

15.
研究利用现有柴油加氢装置生产重整原料的方案,考察不同类型加氢精制催化剂、加氢裂化催化剂以及原料油转化率对柴油加氢裂化反应的影响,筛选出了适宜的加氢精制与加氢裂化催化剂体系。研究发现,在相同反应条件下,Ni-Mo型加氢精制催化剂的加氢脱硫、脱氮以及芳烃饱和性能更好,更适合作为柴油加氢裂化生产重整原料的精制催化剂。在轻油型加氢裂化催化剂体系下,所产石脑油馏分的芳烃含量以及芳烃潜含量(芳潜)最高;在高中油型加氢裂化催化剂体系下,柴油产品十六烷值更高。某炼油厂2.6 Mt/a柴油加氢装置采用该方案后,石脑油收率由改造前的6.47%提升至10.47%,石脑油芳潜由44.5%增加到47.9%,实现了多产高芳潜重整原料的结构调整目标。  相似文献   

16.
在3?300 mL的固定床加氢装置上,以劣质的催化裂化柴油为原料,在氢分压12 MPa、体积空速0.5 h-1、氢/油体积比800:1条件下,考察了反应温度对劣质柴油加氢精制效果的影响;并进一步研究了原料油及加氢精制生成油的窄馏分中烃族组成随馏程的变化规律。结果表明,在反应温度为370 ℃时,加氢精制效果较好,加氢精制生成油的密度为0.865 1 g/cm3,硫质量分数仅为27.51 μg/g,总芳烃脱除率达79.2%,十六烷指数提高15个单位;精制后的各窄馏分中双环及三环芳烃脱除率高达92%以上,而大多数单环芳烃与三环环烷烃集中在285~350 ℃馏分中,因此降低劣质柴油的密度、提高十六烷指数的关键是需要将该馏分段进一步加氢改质。  相似文献   

17.
柴油加氢改质催化剂的预硫化及加氢工艺条件优化   总被引:1,自引:0,他引:1  
介绍了中国石油锦西石化公司柴油加氢改质装置新更换催化剂的预硫化和加氢工艺条件优化情况,考察了硫化氢浓度、反应器床层温度、氢气压力等条件对催化剂预硫化的影响。结果表明,将装置原来使用的催化剂更换为美国标准公司的催化剂并适当预硫化后应用于催化裂化柴油-直馏柴油混合料的加氢改质,在精制反应器及裂化反应器入口温度分别为295,340℃,操作压力为9.5 MPa的适宜工艺条件下,可生产出硫含量达到欧Ⅳ标准的优质柴油产品,与原来使用的催化剂相比,精制反应器和裂化反应器入口温度分别可降低30,35℃。  相似文献   

18.
在小型固定床加氢装置上对煤焦油加氢脱金属催化剂、脱硫催化剂和脱氮催化剂级配比例进行了研究。考察了反应温度和液体体积空速对催化剂加氢反应活性的影响,建立了煤焦油加氢精制动力学模型。通过 Levenberg-Marquardt法拟合出各动力学参数,并根据模型得到了适合煤焦油加氢精制的级配参数。结果表明,该模型可对加氢精制过程的金属、硫、氮脱除率进行预测,并可根据煤焦油加氢操作工艺条件和产品油的要求,推算出适合的催化剂级配比例。  相似文献   

19.
中国石化抚顺石油化工研究院开发的煤焦油高压加氢处理与加氢裂化两段加氢组合工艺生产清洁燃料油技术在某炼油厂160 kt/a煤焦油加氢装置的工业应用结果表明,以煤焦油预处理后的小于500 ℃馏分油为原料,在反应压力为15.0 MPa、氢油体积比为1 000、加氢处理反应温度为(基准+10)℃、体积空速为(基准+0.2)h-1、加氢裂化反应温度为(基准+30) ℃、体积空速为(基准+0.2)h-1的条件下,小于160 ℃馏分硫质量分数为3.3 μg/g,辛烷值(RON)为65.3,可作为低硫石脑油;160~375 ℃柴油馏分的密度为0.852 5 g/cm3,十六烷值为49.5,凝点为-10 ℃,是优质的柴油调合组分;大于375 ℃加氢裂化尾油硫质量分数为2.6 μg/g,芳烃质量分数为2.0%,是很好的润滑油基础油原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号