首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fe3O4 纳米复合粒子研究   总被引:17,自引:1,他引:16       下载免费PDF全文
制备了酞菁镍(N iPc) 2Fe3O4 纳米复合粒子, 研究了其化学稳定性和磁性能。结果表明,N iPc 在Fe3O4 纳米粒子表面形成了复合层, 并且它们之间形成了一定程度的化学键。N iPc 复合层可有效地保护Fe3O4 纳米粒子不被空气氧化, 显著提高了其抗氧化能力, 并降低了其矫顽力。   相似文献   

2.
磁性纳米Fe3O4颗粒(MNP-Fe3O4)作为药物载体在肿瘤治疗领域受到广泛关注。综述了目前MNP-Fe3O4的研究现状,重点阐述了该材料的表面改性目的与改性途径,介绍了MNP-Fe3O4不同载药系统在肿瘤治疗中的应用,并详细阐述了介孔结构的MNP-Fe3O4颗粒作为药物载体的优势,指出了MNP-Fe3O4在肿瘤治疗中仍需解决的问题和发展趋势。  相似文献   

3.
在制备聚砜-Fe3O4磁性复合超滤膜的过程中,为避免纳米Fe3O4粒子团聚,采用偶联剂包裹共沉淀法得到Fe3O4粒子,然后采用相转化法制备了聚砜-Fe3O4磁性复合超滤膜。Zeta电位仪检测出纳米粒子平均粒径为66.83 nm,红外分析发现偶联剂结合在粒子表面。经扫描电镜观察和孔径分布分析得出复合膜中纳米Fe3O4粒子分布均匀,无团聚现象出现,孔径分布较窄。聚乙二醇系列测定基膜为2万的复合膜截留分子量从0T下的19800减小至0.4T的15000,继续增大外加磁场,截留分子量基本不再变化。  相似文献   

4.
李曦  靳艳巧  丁玲  张超灿 《功能材料》2004,35(Z1):2780-2783
采用化学共沉淀法制备出了可达到纳米级分散的Fe3O4纳米粒子,讨论了产物的结构,粒径分布、磁性能及制备过程中工艺条件的控制,并利用等温微量热检测仪测量了Fe3O4和油酸-乙醇溶液之间的吸附热,分析了两者之间的吸附机理.  相似文献   

5.
分析了酞菁镍(NiPc)与Fe3O4纳米粒子的复合过程,提出了其复合机理。研究并建立了NiPc-Fe3O4纳米复合粒子的结构模型。   相似文献   

6.
超顺磁性Fe3O4纳米颗粒的合成及应用   总被引:2,自引:0,他引:2  
总结了超顺磁性Fe3O4纳米颗粒的常用制备方法:沉淀法、水热法、微乳液法、模板合成法及生物矿化合成法,并综述了其研究现状,同时比较了它们各自的优缺点及所面临的问题.此外,还概述了超顺磁性Fe3O4纳米颗粒在靶向药物、癌症治疗、磁共振成像(MR I)及生物活性物质的检测和分离等生物医学方面的应用,并对前景进行了展望.  相似文献   

7.
利用聚甲基丙烯酸甲酯(PMMA)包覆空心Fe3O4磁粒制备了温敏性Fe3O4@PMMA复合粒子,并采用对氨基水杨酸(Mr=153.14)作为模拟负载药物,考察了不同温度与pH对复合粒子的接枝、包覆、载药与控释的影响。载药与控释研究结果表明,磁粒空心结构及PMMA膜与药物之间的氢键作用与温敏效应,显著提高了药物负载量,每0.0100g复合磁粒可负载1468μg(0.959×10-5mol)药物。同时,超过80%的药物在3h~4h内释放,具有局部高浓度药物释放性能,并且药物最大释放量与时间呈线性关系。这种复合空心磁粒载药体系的构建有效提高了药物负载效率,配合磁靶向性能,将在癌症载药治疗方面展现巨大的应用前景。  相似文献   

8.
采用相转化法,把纳米Fe3O4颗粒填充到聚砜(PSF)中制备PSF-Fe3O4磁性复合超滤膜.由扫描电镜观察可知两种膜的膜孔结构和孔径基本相似,纳米粒子主要在孔内壁上,部分发生了团聚.选取在溶液中带电的α淀粉酶和不带电的葡聚糖两类物质为研究对象,考察在有无磁场的情况下,PSF-Fe3O4膜对它们的截留率变化.结果表明,在0.4T的外加磁场下,当pH为2.5、3.5和7.5时,截留率分别从97%降到79%、84%和84%;对于不带电的物质葡聚糖;在0.4T的外加磁场下,PSF-Fe3O4膜的截留率也降低,从56%降到17%.通过这些现象来对PSF-Fe3O4膜在磁场下的作用机理进行分析.  相似文献   

9.
利用正交实验探索了化学共沉淀法制备Fe3O4纳米颗粒的影响因素:[Fe3+];[Fe3+]:[Fe2+];氨水用量倍数;乙醇浓度;晶化时间;晶化温度等参数对Fe3O4纳米颗粒饱和磁化强度和均匀性等性能的影响.通过对极差分析找出了在试验条件范围内Fe3O4粉末的饱和磁化强度达到最大值的工艺条件,即D3A3F4B3E5C4:[Fe3+]=0.1mol/L;合成温度60℃;NH4OH用量倍数=2;晶化时间30min;[Fe2+]:[Fe3+]=0.7;乙醇质量分数16%此论文的工作是为本实验室将要使用的磁性液体自动化制备系统的运用做前期准备.同时也是为本实验室相关项目的磁性液体的制备提供参考.  相似文献   

10.
为研究一种应用于磁稳定流化床反应器的新型高分子磁性微球的制备方法及性能,采用悬浮聚合法制备了Fe_3O_4纳米粒子包覆聚苯乙烯磁性微球,研究了搅拌速率、加入磁性Fe_3O_4纳米粒子的时间等因素对复合微球粒径及性能的影响,运用扫描电子显微镜(SEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、热重(TGA)等测试手段,表征了磁性聚苯乙烯微球的形貌特征、结构、粒径、磁学性能及Fe_3O_4的包覆量.实验结果表明:在搅拌转速为600 r/min,80℃保温10 min加入修饰Fe_3O_4纳米粒子,制备所得的磁性聚苯乙烯微球为粒径分布均匀的球状微粒;Fe_3O_4的包覆量达到5%,最高饱和磁化强度为3.73 emu/g,具有较好的超顺磁性,可应用于磁稳定流化床反应器.  相似文献   

11.
静电纺丝法制备PAN/Fe3O4磁性纳米纤维   总被引:1,自引:0,他引:1  
采用化学共沉淀法制备纳米四氧化三铁,选用曲拉通X-100为分散剂,利用静电纺丝法制备PAN/Fe3O4磁性纳米复合材料。X射线衍射仪(XRD)验证了四氧化三铁在复合纳米纤维中的存在。同时使用扫描电镜(SEM)和透射电镜(TEM)对复合纳米纤维的微观形貌和Fe3O4在纤维中的分布进行了观察,利用热重(TGA)对纳米复合材料的热稳定性进行分析;通过磁性实验分析了纳米复合材料的磁性性能。结果表明,所制备PAN/Fe3O4磁性纳米纤维成型良好,且Fe3O4磁性颗粒在纤维中分散均匀,其与PAN是物理复合。纳米复合材料具有一定磁性,并可由磁性颗粒的加入量进行控制。  相似文献   

12.
在水介质中以羧基取代度为1.2的羧甲基-β-环糊精对Fe3O4磁性纳米颗粒直接进行包覆修饰制备了羧甲基-β-环糊精修饰Fe3O4磁性纳米颗粒,对制备颗粒的形态、结构和成分进行了表征并对其相关性能进行了研究。结果表明,制备的羧甲基-β-环糊精修饰Fe3O4磁性纳米颗粒为近球形,粒径在15~20nm之间,修饰上的羧甲基-β-环糊精约占颗粒总重的8.2%,颗粒为超顺磁性,质量比饱和磁化强度为68.7emu/g,在水中分散良好,载药的羧甲基-β-环糊精修饰Fe3O4磁性纳米颗粒在4h内具有较强的药物突释效应,随后呈现长达26h以上的药物缓释状态。  相似文献   

13.
范秀娟  李欣 《新型炭材料》2012,27(2):111-116
通过FeCl2.4H2O和FeCl3.6H2O混合共沉淀,合成平均粒径为6 nm和10 nm的Fe3O4纳米粒子。然后将两种Fe3O4纳米粒子分别与经HNO3氧化处理的多壁碳纳米管(MWCNTs)置于乙醇水溶液(水和乙醇的体积比为1∶1)中,在超声波作用下制备Fe3O4/MWCNT复合材料。用高分辨透射电子显微镜、X-射线光电子能谱、振动样品磁强计、X射线衍射仪、热重分析仪对所制备的Fe3O4/MWCNT复合材料进行表征。结果表明:由6 nm和10 nm Fe3O4纳米粒子所制备的Fe3O4/MWCNT复合材料中,Fe3O4的质量分数分别为26.65%和29.3%,相应的磁饱和强度分别为16.5 emug-1和7.5 emug-1。  相似文献   

14.
Fe3O4/ 聚吡咯复合材料的制备及表征   总被引:22,自引:3,他引:19       下载免费PDF全文
以化学沉淀法制备Fe3O4 纳米粒子, 采用乙醇对Fe3O4 纳米粒子表面进行处理, 使其表面有机化, 然后通过乳液原位复合制备Fe3O4 / 聚吡咯复合材料。利用TEM, XPS, 四探针测试仪和震荡磁力计对其进行表征和检测。结果表明: 经醇处理的Fe3O4 纳米粒子的分散性得到明显改善, Fe3O4 纳米粒子被包覆在聚吡咯层内, 包覆层厚度为10 nm 左右, 复合材料具有优良的电性能和磁性能, 电导率e= 7. 69 s/ cm~13. 6 s/ cm, 饱和磁强度Ms= 12. 06 emu/ g~24. 38 emu/ g, 矫顽力Hc= 11 Oe~41 Oe。其环境稳定性明显优于纯聚吡咯。   相似文献   

15.
用共沉淀法制备了具有超顺磁性Fe3O4-MWCNTs(多壁碳纳米管)复合粒子,加入环氧树脂(EP)中,在0.6 T的弱定磁场下固化成型。采用TEM研究其定向程度及分散性,并进行动态热机械分析、差热分析和导热率测试。结果表明,MWCNTs表面包覆了磁性Fe3O4纳米粒子,Fe3O4-MWCNTs复合物按照首尾衔接的方式沿着磁场方向定向排列。Fe3O4-MWCNTs/EP纳米复合材料表现出明显的各向异性,垂直于Fe3O4-MWCNTs轴向导热率低于平行方向的导热率,Fe3O4-MWCNTs的加入对于平行方向的导热率影响不大。Fe3O4-MWCNTs的加入使环氧树脂的储能模量变小,损耗模量变大,损耗因子均大于纯环氧树脂,表现出良好的阻尼性能。当Fe3O4-MWCNTs与EP质量比为0.3%时,损耗因子在20 ℃的温域内大于0.7,最高值达到1.16。  相似文献   

16.
用水解沉淀法合成了纳米Fe3O4粒子,并在其悬浮液中原位包覆聚苯胺,制备出纳米Fe3O4/聚苯胺复合粒子。研究了两种纳米粒子在交变磁场下的发热性能,对它们在定向集热治疗肿瘤中的应用前景进行了评价。纳米Fe3O4粒子的粒径为10~30nm,表面包覆聚苯胺后,复合粒子的粒径为30~50nm。纳米Fe3O4粒子的比饱和磁化强度为50.05Am2/kg,矫顽力为10.9kA/m;纳米Fe3O4/聚苯胺复合粒子的比饱和磁化强度为26.34Am2/kg,矫顽力为0。在10mg/mL的生理盐水悬浮液中,在外加交变磁场作用30min后,纳米Fe3O4粒子悬浮液的温度为63.6℃,纳米Fe3O4/聚苯胺悬浮液的温度为52.4℃,二者均达到了医学上定向集热治疗肿瘤用热籽的发热要求,是很有应用前景的医用纳米材料。   相似文献   

17.
用化学共沉淀法合成了Fe3O4纳米微粒,并用双层表面活性剂对其进行表面修饰,得到了以水和乙醇为分散介质的磁流体。在磁流体的存在下,用改进的乳液聚合方法合成了Fe3O4/聚苯乙烯磁性微球。X射线衍射研究表明,Fe3O4纳米微粒的平均粒径约为10 nm;在透射电镜下观察磁性微球的粒径在140 nm左右;并用红外光谱和热失重方法表征了复合微球的化学成分及其所含Fe3O4的百分数。阐述了双层表面活性剂改性的机理,并对聚合过程中单体、磁流体及引发剂的用量的影响进行了讨论。  相似文献   

18.
采用热法合成磁性Fe3O4纳米颗粒,通过精细调控实验条件能对其形状和大小进行有效控制。采用X射线衍射仪、透射电镜、振动样品磁强计等对Fe3O4纳米颗粒的成分、形貌及磁性等进行了表征测试。结果表明,Fe3O4纳米颗粒的饱和磁化强度为62.5emu/g。最后探讨了Fe3O4纳米颗粒的合成机理。  相似文献   

19.
采用化学共沉淀法制备纳米Fe3O4,油酸包覆,高锰酸钾氧化,修饰得到羧基功能化的亲水性磁性纳米复合粒子。通过XRD、TEM、傅里叶红外光谱仪等方法对纳米复合粒子的形态、结构及磁性能进行了研究。结果显示:修饰前后的纳米粒子粒径基本无变化,粒径20nm左右。纳米复合粒子的磁性能表现出超顺磁性,矫顽力减小为0,羧基化磁性纳米粒子可在pH=7.4的磷酸缓冲液中形成稳定分散的磁流体。  相似文献   

20.
为解决磁性纳米Fe3O4易被腐蚀、团聚等问题,可对其进行功能化修饰。在超声波辐照下首先制备磁性纳米Fe3O4颗粒,然后选用2,5-二氨基苯磺酸(SP)和间苯二胺(mPD)单体为引入剂进行功能化修饰,制备得到富含氨基、磺酸基和亚氨基活性官能团的金属基复合材料Fe3O4-mPD/SP(95∶5),并采用FTIR、TEM、XRD等手段对其进行表征,证实了超声波辐照法制得的磁性纳米复合材料具有稳定性好、反应活性高、粒径小和比表面积更大等特点。同时考察其对Pb(II)的吸附性能,结果表明:mPD和SP摩尔比、溶液pH值、竞争性阳离子种类和反应温度等因素均会影响吸附效果;等温吸附过程符合Freundlich模型,吉布斯自由能?G0<0,吸附是一个自发过程;Pb(II)的吸附行为符合准二级动力学,速率常数k2=3.61×10-3 g·mg-1·min-1,平衡吸附量qe=63.297 mg·g  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号