首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bioactive glasses have been used successfully as bone-filling materials in orthopaedic and dental surgery, but their poor mechanical strength limits their applications in load-bearing positions. Approaches to strengthen materials decrease their bioactivity. In order to realize the optimal matching between mechanical and biological properties, the sol-gel-self propagating method is adopted to prepare gel-derived bioglass bulk: 58S in the system SiO2–CaO–P2O5. The obtained glass was analysed for its composition, crystalinity and morphology through FT-IR, Raman, XRD, STEM and X-ray microanalysis.  相似文献   

2.
In recent years, bioactive materials have become important in applications such as implantation, bone regeneration, scaffold, oral implantation and antioxidant materials because of their excellent bioactivity, biocompatibility, osteoconductivity and osteoinductive properties. When exposed to simulated body fluid, bioactive glasses have the ability to bond with both hard and soft tissues through the formation of a hydroxyapatite layer. Nowadays, nanotechnology is emerging as a nascent technology in all disciplines because of its high surface-to-volume ratio and unique properties at nanoscale length. The impact of nanotechnology in biomaterials is of interest because of the enhancement in their biocompatibility and bioactivity. In this investigation, the preparation of nanobioactive glasses by using different methods (such as sol-gel, hydrothermal and sonochemical) is discussed in detail. The structural and morphological characterisation of the prepared samples was made.  相似文献   

3.
骨修复用生物玻璃复合材料研究进展   总被引:1,自引:0,他引:1  
赵荻  黄文旵 《功能材料》2008,39(3):353-354,357
生物玻璃是一类性能优良的生物材料,具有良好的生物活性和生物相容性,作为骨修复植入体可以在材料界面与人体骨组织之间形成化学键合,诱导骨的修复与再生.将生物玻璃与其它材料进行复合,可以制备出生物活性和机械性能优良的骨修复复合材料.综述了生物玻璃复合材料的研究现状,并探讨了该类材料目前存在的不足,展望了其发展趋势.  相似文献   

4.
Bioresorbable and bioactive tissue engineering scaffolds based on bioactive glass (45S5 Bioglass®) particles and macroporous poly(DL-lactide) (PDLLA) foams were fabricated. A slurry dipping technique in conjunction with pretreatment in ethanol was used to achieve reproducible and well adhering bioactive glass coatings of uniform thickness on the internal and external surfaces of the foams. In vitro studies in simulated body fluid (SBF) demonstrated rapid hydroxyapatite (HA) formation on the surface of the composites, indicating their bioactivity. For comparison, composite foams containing Bioglass® particles as filler for the polymer matrix (in concentration of up to 40 wt %) were prepared by freeze-drying, enabling homogenous glass particle distribution in the polymer matrix. The formation of HA on the composite surfaces after immersion in phosphate buffer saline (PBS) was investigated to confirm the bioactivity of the composites. Human osteoblasts (HOBs) were seeded onto as-fabricated PDLLA foams and onto PDLLA foams coated with Bioglass® particles to determine early cell attachment and spreading. Cells were observed to attach and spread on all surfaces after the first 90 min in culture. The results of this study indicate that the fabricated composite materials have potential as scaffolds for guided bone regeneration.  相似文献   

5.
Nanoscale bioactive glasses have been gaining attention due to their reported superior osteoconductivity when compared to conventional (micron-sized) bioactive glass materials. The combination of bioactive glass nanoparticles or nanofibers with polymeric systems enables the production of nanocomposites with potential to be used in a series of orthopedic applications, including scaffolds for tissue engineering and regenerative medicine. This review presents the state of art of the preparation of nanoscale bioactive glasses and corresponding composites with biocompatible polymers. The recent developments in the preparation methods of nano-sized bioactive glasses are reviewed, covering sol–gel routes, microemulsion techniques, gas phase synthesis method (flame spray synthesis), laser spinning, and electro-spinning. Then, examples of the preparation and properties of nanocomposites based on such inorganic bionanomaterials are presented, obtained using various polymer matrices, including polyesters such as poly(hydroxybutyrate), poly(lactic acid) and poly(caprolactone), and natural-based polymers such as polysaccharides (starch, chitin, chitosan) or proteins (silk fibroin, collagen). The physico-chemical, mechanical, and biological advantages of incorporating nanoscale bioactive glasses in such biodegradable nanocomposites are discussed and the possibilities to expand the use of these materials in other nanotechnology concepts aimed to be used in different biomedical applications are also highlighted.  相似文献   

6.
7.
To combine the self-setting property of \(\upalpha \)-calcium sulphate hemihydrate (\(\upalpha \)-CSH) with the bioactive property of bioactive glass (BG), BG was added into \(\upalpha \)-CSH to prepare \(\upalpha \)-CSH/BG composites. The in vitro bioactivity and cytocompatibility of the \(\upalpha \)-CSH/BG composites were assessed by soaking the composites in simulated body fluid (SBF) and co-culturing with the osteoblasts, respectively. Formation of a bone-like apatite layer on the composite surface was studied by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Variations in ionic concentration and pH of the SBF solution were detected. The incorporation of BG into \(\upalpha \)-CSH, effectively compensated for the pH decrease caused by the dissolution of \(\upalpha \)-CSH and the ion exchange. Osteoblast-like cells (MG63) were cultured on the samples, and the MTT results confirmed that the composites containing BG were more favourable for the proliferation of these cells. Hence, \(\upalpha \)-CSH/BG composites might have great potential for the use as a bone regeneration material.  相似文献   

8.
Mesoporous bioactive glass (BG) nanoparticles based in the system: SiO2–P2O5–CaO–MnO were synthesized via a modified Stöber process at various concentrations of Mn (0–7 mol %). The synthesized manganese-doped BG nanoparticles were characterized in terms of morphology, composition, in vitro bioactivity and antibacterial activity. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis confirmed that the particles had spherical morphology (mean particle size: 110?nm) with disordered mesoporous structure. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn, Ca, Si and P in the synthesized Mn-doped BG particles. Moreover, X-ray diffraction (XRD) analysis showed that Mn has been incorporated in the amorphous silica network (bioactive glass). Moreover, it was found that manganese-doped BG particles form apatite crystals upon immersion in simulated body fluid (SBF). Inductively coupled plasma atomic emission spectroscopy (ICP-OES) measurements confirmed that Mn is released in a sustained manner, which provided antibacterial effect against Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus. The results indicate that the incorporation of Mn in the bioactive glass network is an effective strategy to develop novel multifunctional BG nanoparticles for bone tissue engineering.  相似文献   

9.
Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomic-scale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included.  相似文献   

10.
A novel composite nanofiber of poly(lactic acid) (PLA) incorporated with the nanocomponent of bioactive glass was exploited using an electrospinning method. Small concentrations of the bioactive glass phase added up to 10% facilitated the generation of a nanofibrous matrix with hundreds of nanometers in diameter without a formation of beads. The addition of the bioactive glass phase greatly enhanced the in vitro apatite formation on the nanofiber surface under a body simulating medium. Osteoblastic cells were demonstrated to adhere well on the composite nanofiber and grow actively with culturing time, suggesting its usefulness as a supporting matrix for the hard tissue regeneration.  相似文献   

11.
Journal of Materials Science - In the study, tungsten disulfide (WS2) nanoparticle-containing polymer-coated bioactive glass composite scaffolds were prepared for bone tissue engineering...  相似文献   

12.
Abstract

The nature of mechanical strain mediated electromagnetic coupling in multiferroic composites has been studied extensively in recent years. This review is on composites with ferromagnetic or ferrimagnetic oxides and ferroelectrics. Systems studied so far include samples with spinel ferrites, hexagonal ferrites or lanthanum manganites for the ferromagnetic phase and barium titanate, lead zirconate titanate (PZT), lead magnesium niobate–lead titanate (PMN-PT) or lead zinc niobate–lead titanate (PZN-PT) for the ferroelectric phase. Bilayer and multilayer heterostructures, bulk composites, core shell nanoparticles and core shell nanotubes and nanowires were investigated for their response to magnetic fields, termed direct magnetoelectric effect (DME). Several systems show a giant low frequency DME and resonance enhancement at bending and electromechanical resonance. The response of the composites to an electric field, called converse ME effect, is found to be strong in several ferrite–ferroelectric composites. The potential for use of the composites for pico-Tesla magnetic sensors and high frequency electric field tunable ferrite signal processing devices are also addressed in this review.  相似文献   

13.
This research work is focused on the preparation of macroporous glass-ceramic scaffolds with high mechanical strength, equivalent with cancellous bone. The scaffolds were prepared using an open-cells polyurethane sponge as a template and glass powders belonging to the system SiO2–P2O5–CaO–MgO–Na2O–K2O. The glass, named as CEL2, was synthesized by a conventional melting-quenching route, ground and sieved to obtain powders of specific size. A slurry of CEL2 powders, polyvinyl alcohol (PVA) as a binder and water was prepared in order to coat, by a process of impregnation, the polymeric template. A thermal treatment was then used to remove the sponge and to sinter the glass powders, in order to obtain a replica of the template structure. The scaffolds were characterized by means of X-ray diffraction analysis, morphological observations, density measurements, volumetric shrinkage, image analysis, capillarity tests, mechanical tests and in vitro bioactivity evaluation.  相似文献   

14.
Composite materials have recently found application in various field, particularly for high performance equipment. Some examples might be found in the sport and sea transportation field (i.e. yacht hulls, windsurf boards).The aim of the present work is to deepen the knowledge of mechanical properties of sandwich structures used for marine applications, suggesting at the same time some solutions to increase their performances. In particular, a new lamination sequence – used to realise the cover exhaust of luxury yachts – has been investigated.The behaviour of the sandwiches was studied under static conditions, by performing the following tests: three point flexural, torsion, edgewise compression and flatwise compression test. The tests execution has allowed both to analyse the mechanical performances and to understand several fracture mechanisms that take place in these structures.  相似文献   

15.
Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.  相似文献   

16.
Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. 29Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair.  相似文献   

17.
Bioactive glass particles (0.42SiO2–0.15CaO–0.23Na2O–0.20ZnO) of varying size (<90 μm and 425–850 μm) were synthesized and coated with silver (Ag) to produce Ag coated particles (PAg). These were compared against the uncoated analogous particles (Pcon.). Surface area analysis determined that Ag coating of the glass particles resulted in increased the surface area from 2.90 to 9.12 m2/g (90 μm) and 1.09–7.71 m2/g (425–850 μm). Scanning electron microscopy determined that the Ag coating remained at the surface and there was little diffusion through the bulk. Antibacterial (Escherichia coli—13 mm and Staphylococcus epidermidis—12 mm) and antifungal testing (Candida albicans—7.7 mm) determined that small Ag-coated glass particles exhibited the largest inhibition zones compared to uncoated particles. pH analysis determined an overall higher pH consider in the smaller particles, where after 24 h the large uncoated and Ag coated particles were 8.27 and 8.74 respectively, while the smaller uncoated and Ag coated particles attained pH values of 9.63 and 9.35 respectively.  相似文献   

18.
Textile-reinforced thermoplastic composites offer huge application potentials for a rapid manufacturing of components with versatile possibilities of integrating functions. However, an application of these new materials requires the knowledge of the directional dependent material properties. In this study, results are presented concerning selected relevant load cases for industrial applications. For the new group of multi-layered flat bed weft-knitted glass fibre/polypropylene composites (MKF-GF/PP), tensile tests under different temperatures and test velocities have been carried out as well as Charpy impact tests, open hole tension tests and dynamic-mechanical analysis. The mechanical properties of MKF-GF/PP and unidirectional GF/PP composites with tailored fibre surface and interphase, respectively, have been compared to those of woven GF/PP composites and GF/PP composites made of non-crimp fabrics (NCF) as a benchmark.  相似文献   

19.
Abstract

We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.  相似文献   

20.
Two new bioabsorbable inorganic/organic composite materials were developed for bone regeneration. One material used was beta-TCP/PLGC in which poly(L-lactide-co-glycolide-co-epsilon-caprolactone) and beta-tricalcium phosphate were used as the matrix and filler, respectively. The other material used was HAp/Col-a soft nanocomposite of hydroxyapatite and type I collagen. Using these composites, two bone implants were designed. The efficacy of these implants was investigated by applying them to the critical-sized bone defects that were created in the canine tibia. Although no tissue engineering techniques such as application of growth factors or stem cells was utilized, successful healing was observed. These results suggested that bone regeneration in the critical-sized defects is possible without the use of growth factors or stem cells if the materials and the bone implants are suitably designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号