首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Off the shelf scaffolds for replacing ultra-small diameter vascular grafts are valuable for reconstruction of diseased or damaged vessels. The limitations for such grafts include optimal handling with ready availability of varied lengths of grafts, graft patency with the ability to replace the function of active cellular mechanisms and adequate mechanical properties to maintain physicochemical function. We used a well-established, solvent casting method for potential tissue replacement scaffold fabrication with incorporated bioactive molecules, which we have previously explored to confer haemocompatibility. These grafts were tested in-vivo within the abdominal aorta of 10 Wistar rats and the patency was clinically and echographically evaluated. Haemocompatibility and endothelialisation were assessed on explants. Biofunctionalised scaffolds were also grafted subcutaneously and intraperitoneally to evaluate integration, inflammation and angiogenesis reactions. The potential wider applications of this dual acting scaffold were evaluated for its interactions with human dermal fibroblasts as well as bronchial epithelial cells. Physicochemical property evaluation of the functionalised grafts has clarified the mechanical strength and permeability. This study confirmed the microsurgical suturability of tubular grafts and graft patency of functionalized scaffolds. The study demonstrated the potential of a dual acting biofunctionalised scaffold’s use for a wide range of tissue engineering applications where micro-porous, yet impermeable scaffolds are needed.  相似文献   

2.
3.
Raman spectroscopy has been used to determine the chemical composition of materials for over 70 years. Recent spectacular advances in laser and CCD camera technology creating instruments with higher sensitivity and lower cost have initiated a strong resurgence in the technique, ranging from fundamental research to process control methodology. One such area of increased potential is in tissue engineering and regenerative medicine (TERM), where autologous cell culture, stem cell biology and growth of human cells on biomaterial scaffolds are of high importance. Traditional techniques for the in vitro analysis of biochemical cell processes involves cell techniques such as fixation, lysis or the use of radioactive or chemical labels which are time consuming and can involve the perpetuation of artefacts. Several studies have already shown the potential of Raman spectroscopy to provide useful information on key biochemical markers within cells, however, many of these studies have utilised micro- or confocal Raman to do this, which are not suited to the rapid and non-invasive monitoring of cells. For this study a versatile fit-for-purpose Raman spectrometer was used, employing a macro-sampling optical platform (laser spot size 100 μm at focus on the sample) to discriminate between different TERM relevant cell types and viable and non-viable cells. The results clearly show that the technique is capable of obtaining Raman spectra from live cells in a non-destructive, rapid and non-invasive manner, however, in these experiments it was not possible to discriminate between different cell lines. Despite this, notable differences were observed in the spectra obtained from viable and non-viable cells, showing significant changes in the spectral profiles of protein, DNA/RNA and lipid cell constituents after cell death. It is evident that the method employed here shows significant potential for further utilisation in TERM, providing data directly from live cells that fits within a quality assurance framework and provides the opportunity to analyse cells in a non-destructive manner.  相似文献   

4.
Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.  相似文献   

5.
6.
Materials in regenerative medicine   总被引:1,自引:0,他引:1  
  相似文献   

7.
Hydrogels in regenerative medicine   总被引:1,自引:0,他引:1  
Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.  相似文献   

8.
Abstract

Regenerative medicine is an exciting field that aims to create regenerative alternatives to harvest tissues for transplantation. In this approach, the delivery of cells and biological molecules plays a central role. The scaffold (synthetic temporary extracellular matrix) delivers cells to the regenerative site and provides three-dimensional environments for the cells. To fulfil these functions, we design biodegradable polymer scaffolds with structural features on multiple size scales. To enhance positive cell–material interactions, we design nano-sized structural features in the scaffolds to mimic the natural extracellular matrix. We also integrate micro-sized pore networks to facilitate mass transport and neo tissue regeneration. We also design novel polymer devices and self-assembled nanospheres for biomolecule delivery to recapitulate key events in developmental and wound healing processes. Herein, we present recent work in biomedical polymer synthesis, novel processing techniques, surface engineering and biologic delivery. Examples of enhanced cellular/tissue function and regenerative outcomes of these approaches are discussed to demonstrate the excitement of the biomimetic scaffold design and biologic delivery in regenerative medicine.  相似文献   

9.
Regenerative medicine is an exciting field that aims to create regenerative alternatives to harvest tissues for transplantation. In this approach, the delivery of cells and biological molecules plays a central role. The scaffold (synthetic temporary extracellular matrix) delivers cells to the regenerative site and provides three-dimensional environments for the cells. To fulfil these functions, we design biodegradable polymer scaffolds with structural features on multiple size scales. To enhance positive cell–material interactions, we design nano-sized structural features in the scaffolds to mimic the natural extracellular matrix. We also integrate micro-sized pore networks to facilitate mass transport and neo tissue regeneration. We also design novel polymer devices and self-assembled nanospheres for biomolecule delivery to recapitulate key events in developmental and wound healing processes. Herein, we present recent work in biomedical polymer synthesis, novel processing techniques, surface engineering and biologic delivery. Examples of enhanced cellular/tissue function and regenerative outcomes of these approaches are discussed to demonstrate the excitement of the biomimetic scaffold design and biologic delivery in regenerative medicine.  相似文献   

10.
The biological safety of biomaterials used for implantable medical devices is usually determined by a series of standard tests that assess the effects that extractable substances have on cells in vitro and in simple short term animal studies. To use these tests to determine the suitability of materials for tissue engineering templates is inappropriate. This short essay discusses the issues that are involved.  相似文献   

11.
Regenerative medicine is a demanding field in terms of design and elaboration of materials able to meet the specifications that this application imposes. The regeneration of tissue is a multiscale issue, from the signaling molecule through cell expansion and finally tissue growth requiring a large variety of cues that should be delivered in place and time. Hence, the materials should be able to accommodate cells with respect to their phenotypes, to allow cell division to the right tissue, to maintain the integrity of the surrounding sane tissue, and eventually use their signaling machinery to serve the development of the appropriate neo-tissue. They should also present the ability to deliver growth factors and regulate tissue development, to be degraded into safe products, in order not to impede tissue development, and finally be easily implanted/injected into the patients. In this context, colloid-based materials represent a very promising family of products because one can take advantage of their high specific area, their capability to carry/deliver bio-active molecules, and their capacity of assembling (eventually in vivo) into materials featuring other mechanical, rheological, physicochemical properties. Other benefits of great interest would be their ease of production even via high through-put processes and their potential manufacturing from safe, biodegradable and biocompatible parent raw material. This review describes the state-of-the-art of processes leading to complex materials from the assembly of colloids meeting, at least partially, the above-described specifications for tissue engineering and regenerative medicine.  相似文献   

12.
Poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) was previously evaluated for the colloidal delivery of α-chymotrypsin. In this article, the effect of varying polymer molecular weight (MW) and chemistry on particle size and morphology; encapsulation efficiency; in vitro release; and the biological activity of α-chymotrypsin (α-CH) and lysozyme (LS) were investigated. Microparticles were prepared using emulsion solvent evaporation and evaluated by various methods. Altering the MW or monomer ratio of PGA-co-PDL did not significantly affect the encapsulation efficiency and overall poly(1,3-propanediol adipate-co-ω-pentadecalactone) (PPA-co-PDL) demonstrated the highest encapsulation efficiency. In vitro release varied between polymers, and the burst release for α-CH-loaded microparticles was lower when a higher MW PGA-co-PDL or more hydrophobic PPA-co-PDL was used. The results suggest that, although these co-polyesters could be useful for protein delivery, little difference was observed between the different PGA-co-PDL polymers and PPA-co-PDL generally provided a higher encapsulation and slower release of enzyme than the other polymers tested.  相似文献   

13.
Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches.  相似文献   

14.
Polymeric microparticles have been previously demonstrated to deliver various therapeutic agents efficiently to targeted regions by protecting the drug from harsh gastric milieu of the gastrointestinal tract. In this study, we investigated the hypoglycemic effect of β-cyclodextrin polymeric insulin microparticles in diabetic rats via the oral route of administration. β-cyclodextrin microparticles were prepared by a unique one-step spray-drying technique and stabilized by incorporating enteric retardant polymers in the formulation. The insulin-loaded microparticles had a mean size of 0.8?±?0.25?μm with a zeta potential of 3.57?+?0.62?mV. As seen with the chromatographic analysis, the drug content in the microparticles was determined to be 94.9?±?2.77%. RAW macrophage cells showed greater than 80% viability after 24?h of incubation with the insulin and blank microparticles. For the in vitro release study, the microparticles were able to protect the insulin in gastric fluid where no significant release was detected, followed by only 50% release in intestinal fluid for the first 8?h of the study. This was seen to correlate with the in vivo data where 50% glucose inhibition was seen after 8?h of oral administration in diabetic rats. This data suggest that the oral insulin microparticles were able to reduce glucose levels in disease conditions and would be a favorable route of administration to patients as an alternative to daily subcutaneous injections.  相似文献   

15.
The Eleventh Five-Year Plan places emphasis on enhancing the nation's innovation capabilities. Innovation forms a key part of the strategy to change China's central mode of growth to one that is based on science and technology.  相似文献   

16.
Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.  相似文献   

17.
Kefiran from kefir grains, an exopolysaccharide (EPS) produced by lactic acid bacteria (LAB), has received an increasing interest because of its safe status. This natural biopolymer is a water-soluble glucogalactan with probed health-promoting properties. However, its biological performance has yet to be completely recognized and properly exploited. This research was carried out to evaluate the in vitro antioxidant and the in vitro anti-inflammatory properties of Kefiran biopolymer. Regarding antioxidant activity, the results demonstrated that the Kefiran extract possessed the strongest reducing power and superoxide radical scavenging, over hyaluronic acid (HA, gold standard viscosupplementation treatment). This exopolysaccharide showed a distinct antioxidant performance in the majority of in vitro working mechanisms of antioxidant activity comparing to HA. Moreover, Kefiran presented an interesting capacity to scavenge nitric oxide radical comparing to the gold standard that did not present any potency. Finally, the cytotoxic effects of Kefiran extracts on hASCs were also performed and demonstrated no cytotoxic response, ability to improve cellular function of hASCs. This study demonstrated that Kefiran represented a great scavenger for reactive oxygen and nitrogen species and showed also that it could be an excellent candidate to promote tissue repair and regeneration.  相似文献   

18.
Metabolomics is a method for investigation of changes in the global metabolite profile of cells. This paper discusses the technical application of the approach, considering metabolite extraction, separation, mass spectrometry and data interpretation. A particular focus is on the application of metabolomics to the study of stem cell physiology in the context of biomaterials and regenerative medicine. Case studies are used to illustrate key points, focusing on the use of metabolomics in the examination of mesenchymal stem cell responses to titania-nanopillared substrata designed for orthopaedic applications.  相似文献   

19.
In this paper, a practical model for predicting the performance and efficiency of active magnetic regenerative refrigerators (AMRRs) has been developed. With this model, the refrigeration capacity, the power consumption (including the power required to move regenerator cylinder and drive heat transfer fluid) and consequently the coefficient of performance (COP) of a real AMRR system can be predicted with different heat transfer fluids. A dimensionless parameter, utilization at maximum refrigeration capacity (UMRC), is used to numerically characterize the performance of an AMRR. The numerical results indicate that the UMRC increases with increasing number of transfer units (NTU) and eventually reaches its maximum. Increasing operating frequency increases the refrigeration capacity of the AMRR while causes a reduction in COP. The influences of the physical properties of transfer fluids on the AMRR performance are also studied. Liquid is more favorable than gas for being used as heat transfer fluid in AMRR systems.  相似文献   

20.
Diatomaceous earth (DE), naturally available silica, originated from fossilized diatoms has been explored for use in drug delivery applications as a potential substitute for synthetic silica materials. The aim of this study is to explore the influence of particle size, morphology and surface modifications of diatom silica microparticles on their drug release properties. Raw DE materials was purified and prepared to obtain high purity DE silica porous particles with different size and morphologies. Comparative scanning electron microscope and particle characterization confirmed their particle size including irregularly shaped silica particles (size 0.1–1 μm, classified as “fine”), mixed fractions (size 1–10 μm, classified as “mixture”) and pure, unbroken DE structures (size 10–15 μm, classified as “entire”). Surface modification of DE with silanes and phosphonic acids was performed using standard silanization and phosphonation process to obtain surface with hydrophilic and hydrophobic properties. Water insoluble (indomethacin) and water soluble (gentamicin) drugs were loaded in DE particles to study their drug release performances. In vitro drug release studies were performed over 1–4 weeks, to examine the impact of the particle size and hydrophilic/hydrophobic functional groups. The release studies showed a biphasic pattern, comprising an initial burst release for 6 h, followed by near-zero order sustained release. This study demonstrates the potential of silica DE particles as a natural carrier for water soluble and insoluble drugs with release controlled by their morphological and interfacial properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号