首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
钛白副产物七水硫酸亚铁固体废弃物堆积存放不仅污染环境,而且浪费铁资源,限制钛白产业发展。以其为原料,用NaOH、NH_(3)·H_(2)O、Na_(2)CO_(3)沉淀剂制得无定型高硫容羟基氧化铁材料,进而制备高附加值的脱硫剂,实现固废资源化利用。采用XRF、XRD、TGA-DSC、N_(2)吸附法、物性分析和性能评价对合成材料和脱硫剂进行分析评价。结果表明,制得的材料是无定型羟基氧化铁,以氧化铁质量计质量分数为84.49%~87.93%,穿透硫容分别是41.32%、47.87%、44.80%;制备的脱硫剂穿透硫容分别是29.03%、34.15%、31.68%。工业生产样堆积密度1.02 kg·L^(-1),抗压碎力183.96 N·cm^(-1),比表面积78.778 m^(2)·g^(-1),孔容0.165 mL·g^(-1),最可几孔径4.66 nm,穿透硫容31.29%。羟基氧化铁脱硫剂可广泛应用于各类原料净化脱硫工艺。  相似文献   

2.
以前驱物工业活性ZnO和碱式碳酸锌分解的ZnO为脱硫剂活性组分,在引入结构助剂γ-Al_2O_3、碱性助剂K2CO3改性的基础上,制备出转化吸收型氧化锌基脱硫剂。在300℃、空速2000h–1及常压下,考察了活性组分ZnO前驱物种类及不同前驱物制备的助剂γ-Al_2O_3对氧化锌基脱硫剂脱除硫化物性能的影响。结果表明:改性氧化锌基脱硫剂的孔隙结构和碱性显著影响其脱硫性能。与工业活性ZnO制备的氧化锌脱硫剂相比,以碱式碳酸锌分解的ZnO制备的脱硫剂对硫化氢的脱除效率和穿透硫容更高,穿透硫容约增加10倍。不同前驱物制备的γ-Al_2O_3对氧化锌基脱硫剂脱硫性能有较大影响。其中,拟薄水铝石分解的γ-Al_2O_3显著提高了氧化锌基脱硫剂脱硫性能,穿透硫容达12.18%。以碱式碳酸锌分解ZnO为活性组分,添加拟薄水铝石分解的γ-Al_2O_3和碱性助剂K2CO3制备的改性氧化锌基脱硫剂对COS的脱除起到转化与吸收作用,COS转化率达99.98%,穿透硫容为4.03%。  相似文献   

3.
以凹凸棒石为载体,结合金属氧化物,采用浸渍法制备了凹凸棒石基氧化锌脱硫剂。以最大硫容为指标,通过正交和单因素实验对脱硫剂的制备工艺条件进行优化。实验结果表明,用1%的盐酸改性凹凸棒石,改性凹凸棒石与硝酸锌的质量比为1.3∶1,pH值为6~7,30℃水浴中搅拌7h,105℃下干燥,250℃下焙烧5h,最终制得了凹凸棒石基氧化锌脱硫剂,并对硫化氢气体进行了脱除实验,其最大硫容为14.82%。  相似文献   

4.
复合金属氧化物脱除羰基硫的研究   总被引:6,自引:0,他引:6  
采用共沉淀法制备铁锰复合金属氧化物脱硫剂,从温度、空速和羰基硫浓度几个方面考察对脱硫剂脱硫性能的影响.实验结果表明,该脱硫剂在250℃~350℃,强还原性气氛下,具有较高的有机硫脱硫精度和较大硫容.实验还考察了氧化锌、氧化铜、氧化镍和氧化铈几种添加剂对脱硫剂脱硫效果影响,结果表明,脱硫剂中添加氧化镍和氧化铈后脱硫精度有较大提高,出口羰基硫浓度低于0.1×10-6,添加氧化铜和氧化锌的脱硫精度为0.2×10-6;此外,添加氧化锌脱硫剂硫容较大,穿透硫容为25%,而添加氧化铈的脱硫剂硫容相对较小.  相似文献   

5.
通过优化制备工艺和制备条件,提高氧化锌脱硫剂的脱硫性能。以乙二酸和乙酸锌为原料,采用固相法制备了乙二酸锌前驱体;添加助剂和粘结剂后,通过微波焙烧制备了氧化锌中高温煤气脱硫剂。采用单因素法研究了微波功率、焙烧温度、焙烧时间以及活性组分质量分数对脱硫剂性能的影响,并利用响应面法探讨了各因素及其交互作用对脱硫剂穿透时间和硫容的影响,确定了氧化锌脱硫剂的最佳制备工艺:微波功率1 300 W,焙烧温度550℃,焙烧时间60 min,活性组分质量分数30%。采用回归分析法建立了回归模型,并通过试验验证了模型的可靠性。结果表明:模型预测值与实测值接近;焙烧温度、焙烧时间和活性组分质量分数对脱硫剂穿透时间有显著的影响;焙烧温度和焙烧时间、焙烧温度和活性组分质量分数二者的交互作用均比较显著。  相似文献   

6.
介绍了新型高效铁锰系转化吸收型脱硫剂的实验室研究结果。该脱硫剂是在TC-1型脱硫剂基础上从改进化学组分、物理结构和颗粒外型等方面着手研制,主要应用于精细脱除气态烃中脱除有机硫(噻吩类除外)和无机硫。在实际测试中,除保证了TC-1型脱硫剂高转化活性和高净化度外,本研究所制备的脱硫剂的穿透硫容、饱和硫容均得到了大幅提高。本脱硫剂部分替代加氢-氧化锌脱硫剂,可降低操作费用,提高经济效益。  相似文献   

7.
采用燃烧中和法测定氧化锌脱硫剂硫容。通过实验确定了最佳的实验条件:在燃烧温度为1000℃,燃烧时间25min,并继续通氧气5min的实验条件下,测定不同脱硫剂硫容的结果与艾氏卡法的相对误差均小于0.4%。并论证了该分析方法的准确性、科学性和实用性。  相似文献   

8.
研究了氢氧化钠等碱性助剂对氧化锌脱硫剂低温活性的促进作用。在模拟工况条件下,进行常压硫容评价,实验结果表明:添加适量碱性助剂对提高氧化锌脱硫剂的低温硫容具有良好的效果  相似文献   

9.
低温氧化锌脱硫剂的研究   总被引:6,自引:0,他引:6  
陈子汀  弋飞 《沈阳化工》1999,28(2):16-18,42
研究一氢氧化钠等碱性助剂对氧化锌脱硫剂低温活性的促进作用,在模拟工况条件下,进行常压硫容评价,实验结果表明:添加适量碱性助剂对提高氧化锌脱硫剂的低温硫容具有良好的效果。  相似文献   

10.
为了获得更加高效的脱硫剂,仵实验室固定床脱硫装置上进行脱硫试验,在操作温度700K,空速为1000h^-1时的条件下,以氧化铁现氧化铜为丰要活性组分,考察了添加助剂对脱硫剂物理与化学性能的影响。结果表明:添加助剂K的脱硫荆的强度为81.7N/cm,堆积密度为0.717g/cm^3,出口羰基硫浓度比添加其他两类助剂低,并长时间保持低于0.2×10^-1,硫容达24.3g·S/100g。  相似文献   

11.
采用固相法及尿素沉淀法分别制备Ni O和ZnO,以ω(ZnO)∶ω(Ni O)∶ω(Al_2O_3)=0.3∶1∶1混涅成型制备脱硫吸附剂,考察焙烧温度对吸附剂选择性吸附脱除苯中微量噻吩硫化物的影响,并采用XRD、H_2-TPR和BET等对吸附剂进行表征。结果表明,前驱体的焙烧温度对吸附剂晶体结构和脱硫性能影响显著,焙烧温度500℃时,吸附剂表面活性位及与载体的相互作用适中,吸附脱硫效果最好。在185℃和1.5 MPa吸附条件下,以含噻吩100 mg·L~(-1)的苯为原料,吸附剂动态饱和吸附硫容量可达18.4 mg·g~(-1),吸附后苯中噻吩浓度不高于0.010 mg·L~(-1),表明制备的吸附剂具有较好的吸附脱硫应用前景。  相似文献   

12.
针对水泥行业使用固废、危废导致其二氧化硫排放浓度超标的问题,通过脱硫试验筛选具有催化作用的三氧化二铁、氧化镁制备成新型高效催化脱硫剂,其脱硫效率高于工业级氢氧化钙。在河南DD水泥有限公司进行了新型高效催化脱硫剂的工业应用试验。结果表明:与工业级氢氧化钙相比,新型高效催化脱硫剂具有更高的脱硫效率,钙硫物质的量比降低了56.7%。通过新型高效催化脱硫剂的使用,可满足水泥企业二氧化硫质量浓度<35 mg/Nm3的超低排放要求,且此过程无废弃物产生。制备的新型高效催化脱硫剂具有广阔的应用前景。  相似文献   

13.
以γ-Al_2O_3为主要组成,添加质量分数2%~5%的Cu O、2%~5%的Zn O和1%~2%Mo O_3,采用盘式造粒成型工艺制备(2~3)mm的球形颗粒,通过烘干和焙烧制备出比表面积(200~250)m~2·g~(-1)的载体,然后用碱金属氢氧化物对载体进行修饰,制得COS吸附剂,并考察其对COS的吸附性能。结果表明,通过添加活性氧化物的产品对COS的吸附性能良好,对COS吸附容量达11.5 mg·g~(-1),可将COS脱除至0.02 mg·m~(-3)。  相似文献   

14.
以七水硫酸锌、碳酸氢铵为原料,通过液相沉淀法合成纳米氧化锌前体,并焙烧获得纳米氧化锌。本文采用XRD、TG-DSC、TEM、BET等测试手段对纳米氧化锌及其前体进行表征,研究了焙烧温度对所制备氧化锌形貌、晶型及脱硫活性的影响,结果表明:所获得的碱式碳酸锌为不规则纳米晶,晶粒尺寸约为2~10nm;在不同的焙烧温度下所获得的纳米氧化锌的综合性能存在较大差异,其中在焙烧温度300℃处理所得纳米氧化锌综合性能较高,其晶粒尺寸为5~10nm之间,结晶度较完整,比表面积为41.41m2/g,在220℃脱硫活性较高,穿透硫容>25%;随着焙烧温度的提高,纳米氧化锌的晶化程度加大,表面性质被破坏,比表面积急剧下降,颗粒团聚严重;焙烧温度太低,则纳米氧化锌前体分解不完全,影响其纯度。  相似文献   

15.
以锌基材料为主要组分,采用共沉淀法及混捏法制备级配组合的深度精脱硫剂,采用XRF、XRD、氮吸附法对试验前后的脱硫剂进行表征。结果表明,金属氧化物对H2S的脱硫精度顺序为CuO>ZnO>NiO>CaO>MnO>Fe3O4>MgO;共沉淀法制备的深度精脱硫剂CuO和ZnO的平均晶粒分别为10.1 nm和9.1 nm,不同挤条压力下混捏法制备的精脱硫剂ZnO晶粒大小不同;高温可提高锌基精脱硫剂活性组分的利用率;脱硫剂的硫容分别为36.35%、32.91%、33.05%、19.52%时,相对应的活性组分的利用率分别为96.5%、92.60%、93.54%、75.1%;使用后精脱硫剂的孔容、比表面积均大幅下降,但最可几孔径、平均孔径变化较小,同时表明大孔容、高比表面积、大孔径更有利于提高脱硫剂的脱硫反应活性、硫容和活性组分的利用率。  相似文献   

16.
采用浸渍法制备不同Ti O2含量的Ag/Ti O2-Al2O3吸附剂,以含硫量为245.36 mg·L-1的商品柴油作为考察对象,常温、常压条件下采用静态评价进行吸附脱硫性能研究。结果表明,经过Ti O2改性的Ag/Al2O3吸附剂柴油吸附脱硫活性有较大幅度提高。通过X射线衍射、N2物理吸附、O2化学吸附和NH3程序升温脱附等研究Ti O2改性剂的影响。关联活性测试和表征结果发现,吸附剂的吸附脱硫活性受吸附剂比表面积、活性金属Ag分散度和吸附剂表面酸协同影响。吸附剂比表面积越大,活性金属Ag分散度越高,吸附剂表面弱酸性位点数量越多,强酸性位点数量越少,吸附剂吸附脱硫活性越高。2%Ag/4%Ti O2-Al2O3的吸附脱硫活性最高,饱和硫容达2.11 mg·g-1。  相似文献   

17.
Ultra-deep desulfurization of transformer oil is of great demand among power industry. In this work, the effective and deep removal of various types of organosulfurs, including mercaptan, sulfide and disulfide via catalytic adsorptive desulfurization (CADS) using bifunctional Ti-based adsorbent is reported. Compared to adsorptive desulfurization (ADS), dramatically improvement of the organosulfur uptakes were achieved under CADS process. The equilibrium adsorption capacity at 5 μg·g-1 S reached up to 15.7, 33.4, 11.6 and 11.9 mg·g-1 for propyl mercaptan(n-PM), dimethyl sulfide(DMS), di-t-butyl disulfide (DTBDS) and dibenzyl disulfide (DBDS), which was 262, 477, 97 and 128 times to that of ADS process, respectively, and was the highest among the reported desulfurization adsorbents. Moreover, it achieved superior breakthrough capacity of 2050, 530 and 210 ml F·(g A)-1 at the breakthrough S concentration of 1 μg·g-1 of the commercial transformer oil S containing 10, 50 and 150 μg·g-1, respectively. The effectiveness of CADS is associated to the transformation of sulfur species to higher polar sulfonic species with the assistance of mild oxidant, which can be readily captured by silanol groups on SiO2 through H-bonding interaction. The excellent recyclability of the adsorbent can be realized through solvent washing or oxidative air treatment. This work provides an effective and economic approach for the elimination of trace amount of mercaptan, sulfide and disulfide from transformer oil.  相似文献   

18.
An environmentally friendly and resource-conserving route to the clean production of electrolytic manganese was developed, in which the electrolytic manganese residue(EMR) was initially calcined for cement buffering;then the generated SO_2-containing flue gas was managed using manganese oxide ore and anolyte(MOOA) desulfurization; at last, the desulfurized slurry was introduced to the electrolytic manganese production(EMP). Results showed that 4.0 wt% coke addition reduced the sulfur of calcined EMR to 0.9%, thereby satisfying the cement-buffer requirement. Pilot-scale desulfurization showed that about 7.5 vol% of high SO_2 containing flue gas can be cleaned to less than 0.1 vol% through a five-stage countercurrent MOOA desulfurization. The desulfurized slurry had 42.44 g·L~(-) Mn~(2+) and 1.92 g·L~(-1) S_2 O_6~(2-), which was suitable for electrowinning after purification, and the purity of manganese product was 99.93%, satisfy the National Standard of China YB/T051-2015.This new integrated technology fulfilled 99.7% of sulfur reutilization from the EMR and 94.1% was effectively used to the EMP. The MOOA desulfurization linked the EMP a closed cycle without any pollutant discharge, which promoted the cleaner production of EMP industry.  相似文献   

19.
废轮胎经热解制备得到热解油和热解炭,热解炭活化制得活性炭,并利用Ag+对活性炭进行改性制得Ag+改性活性炭(Ag/AC),将Ag/AC用于热解油的吸附脱硫实验,并利用GC/MS对热解油中的含硫化合物进行了分析。研究结果表明:活性炭吸附脱硫的合适温度和时间分别为20℃和12 h,此时未改性活性炭的脱硫率为15.33%;而Ag/AC的脱硫率提高到了38.6%。GC/MS分析发现热解油中有机硫的主要存在形式为噻吩、2-甲基噻吩、苯并噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩,其中二苯并噻吩(DBT)的GC含量最高,为2.57%。利用原位红外、核磁共振氢谱、ICP-OES和元素分析等检测手段,进一步探究了Ag+与二苯并噻吩模型化合物在溶液中的反应机理,研究发现:二苯并噻吩分子上存在S原子和苯环2个反应位点,当Ag+加入二苯并噻吩溶液后,Ag+与二苯并噻吩分子上的S原子或者苯环发生配位数为1的配位反应生成2种配合物,分子式分别为Ag(DS)NO3和Ag(DC6H6)NO3。  相似文献   

20.
李玉龙  郭曙强  吴娟  丁伟中 《煤炭转化》2012,35(2):81-84,94
单一氧化锌负载型脱硫剂脱硫精度可达到0.1×10-6,但其硫容量相对较低.采用共浸渍法制备ZnO-MnO2/γ-Al2O3负载型H2S脱硫剂,通过XRD和BET等手段研究了MnO2对脱硫剂物相及比表面积的影响.并在固定床反应器中考察了Zn/Mn摩尔比、负载量、烧结温度和脱硫温度对脱硫性能的影响.结果表明,活性组分锌锰摩尔比为8∶1,负载量为20%的脱硫剂有较好的脱硫性能,脱硫精度小于0.1×10-6的同时,最高硫容量可达19.08 g S/100 g(ZnO-MnO2).MnO2的加入可以明显改善氧化锌负载型脱硫剂的脱硫性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号