共查询到20条相似文献,搜索用时 34 毫秒
1.
To discover novel herbicidal compounds with favorable activity, a range of phenylpyridine-moiety-containing α-trifluorothioanisole derivatives were designed, synthesized, and identified via NMR and HRMS. Preliminary screening of greenhouse-based herbicidal activity revealed that compound 5a exhibited >85% inhibitory activity against broadleaf weeds Amaranthus retroflexus, Abutilon theophrasti, and Eclipta prostrate at 37.5 g a.i./hm2, which was slightly superior to that of fomesafen. The current study suggests that compound 5a could be further optimized as an herbicide candidate to control various broadleaf weeds. 相似文献
2.
Wenqiang Tan Conghao Lin Jingjing Zhang Qing Li Zhanyong Guo 《Molecules (Basel, Switzerland)》2022,27(9)
Hydroxypropyltrimethyl ammonium chloride chitosan (HACC) is one of the most important water-soluble chitosan derivatives; its derivatives have gained growing attention due to their potential biomedical applications. Here, hydroxypropyltrimethyl ammonium chitosan derivatives bearing thioctate (HACTs), with different degrees of substitution of thioctate, were prepared using HACC and α-lipoic acid as the reaction precursors, using an ion exchange method. The structural characteristics of the synthesized derivatives were confirmed by FTIR, 1H NMR, and 13C NMR spectroscopy. In addition, their antioxidant behaviors were also investigated in vitro by the assays of reducing power, and scavenging activities against hydroxyl radicals and DPPH radicals. The antioxidant assay indicated that HACTs displayed strong antioxidant activity compared with HACC, especially in terms of reducing power. Besides, the antioxidant activities of the prepared products were further enhanced with the increase in the test concentration and the degrees of substitution of thioctate. At the maximum test concentration of 1.60 mg/mL, the absorbance value at 700 nm of HACTs, under the test conditions, was 4.346 ± 0.296, while the absorbance value of HACC was 0.041 ± 0.007. The aforementioned results support the use of HACTs as antioxidant biomaterials in food and the biomedical field. 相似文献
3.
Abd Elmoneim O. Elkhalifa Eyad Al-Shammari Mohd Adnan Jerold C. Alcantara Khalid Mehmood Nagat Elzein Eltoum Amir Mahgoub Awadelkareem Mushtaq Ahmad Khan Syed Amir Ashraf 《Molecules (Basel, Switzerland)》2021,26(12)
Abelmoschus esculentus (Okra) is an important vegetable crop, widely cultivated around the world due to its high nutritional significance along with several health benefits. Different parts of okra including its mucilage have been currently studied for its role in various therapeutic applications. Therefore, we aimed to develop and characterize the okra mucilage biopolymer (OMB) for its physicochemical properties as well as to evaluate its in vitro antidiabetic activity. The characterization of OMB using Fourier-transform infrared spectroscopy (FT-IR) revealed that okra mucilage containing polysaccharides lies in the bandwidth of 3279 and 1030 cm−1, which constitutes the fingerprint region of the spectrum. In addition, physicochemical parameters such as percentage yield, percentage solubility, and swelling index were found to be 2.66%, 96.9%, and 5, respectively. A mineral analysis of newly developed biopolymers showed a substantial amount of calcium (412 mg/100 g), potassium (418 mg/100 g), phosphorus (60 mg/100 g), iron (47 mg/100 g), zinc (16 mg/100 g), and sodium (9 mg/100 g). The significant antidiabetic potential of OMB was demonstrated using α-amylase and α-glucosidase enzyme inhibitory assay. Further investigations are required to explore the newly developed biopolymer for its toxicity, efficacy, and its possible utilization in food, nutraceutical, as well as pharmaceutical industries. 相似文献
4.
Elham Amin Mohamed Sadek Abdel-Bakky Mostafa Assem Darwish Hamdoon A. Mohammed Sridevi Chigurupati Kamal Ahmad Qureshi Marwa H. A. Hassan 《Molecules (Basel, Switzerland)》2022,27(3)
Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p < 0.05) in the body weight and serum insulin level, as well as a significant decrease in food and water intake, RBGL, FBGL, total cholesterol, and triglyceride levels, in STZ-induced diabetic mice, compared with the diabetic control group. Meanwhile, no significant differences of both extract doses were observed in normoglycemic mice when compared with normal control animals. This study revealed a promising antidiabetic activity of the wild plant A. alopecuroides. 相似文献
5.
Ammar Haouat Habiba Rechek Diana C. G. A. Pinto Susana M. Cardoso Mnica S. G. A. Vlega Abdelhamid Boudjerda Artur M. S. Silva Ratiba Mekkiou 《Molecules (Basel, Switzerland)》2022,27(24)
In the present study, two extracts from the aerial parts of the endemic species Satureja hispidula were analyzed for the first time by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS) method in order to identify and quantify their phenolic compounds. These extracts’ antioxidant, α-glucosidase and α-amylase inhibitory activities were also evaluated. UHPLC-DAD-ESI/MS allowed the identification of 28 and 20 compounds in the ethanolic and aqueous extracts, respectively; among them, 5-O-caffeoylquinic acid was the most abundant in both extracts. The biological assay results indicate that the species S. hispidula, besides its high antioxidant power, is also potentially useful for inhibiting the α-glucosidase enzyme. In both antioxidant and α-glucosidase inhibitory assays, the aqueous extract exhibited the most promising results, significantly better than the standards used as positive controls. 相似文献
6.
Daniil Zhukovsky Dmitry Darin Olga Bakulina Mikhail Krasavin 《Molecules (Basel, Switzerland)》2022,27(6)
The reactivity of cyclic α-diazo monocarbonyl compounds differs from that of their acyclic counterparts. In this review, we summarize the current literature available on the synthesis and synthetic applications of three major classes of cyclic α-diazo monocarbonyl compounds: α-diazo ketones, α-diazo lactones and α-diazo lactams. 相似文献
7.
Acetylcholine was the first neurotransmitter described. The receptors targeted by acetylcholine are found within organisms spanning different phyla and position themselves as very attractive targets for predation, as well as for defense. Venoms of snakes within the Elapidae family, as well as those of marine snails within the Conus genus, are particularly rich in proteins and peptides that target nicotinic acetylcholine receptors (nAChRs). Such compounds are invaluable tools for research seeking to understand the structure and function of the cholinergic system. Proteins and peptides of venomous origin targeting nAChR demonstrate high affinity and good selectivity. This review aims at providing an overview of the toxins targeting nAChRs found within venoms of different animals, as well as their activities and the structural determinants important for receptor binding. 相似文献
8.
Samkelo Malgas Mpho S. Mafa Brian N. Mathibe Brett I. Pletschke 《Molecules (Basel, Switzerland)》2021,26(22)
Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6) and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH family α-l-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-d-glucuronidases (GH4 Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reducing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent debranching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic enzyme cocktails is crucial for achieving efficient biomass saccharification. 相似文献
9.
Shouye Han Yu Liu Wan Liu Fan Yang Jia Zhang Ruifeng Liu Fenqin Zhao Wei Xu Zhongbin Cheng 《Molecules (Basel, Switzerland)》2021,26(17)
The fungal strain YPGA3 was isolated from the sediments of the Yap Trench and identified as Penicillium thomii. Eight new chromone derivatives, named penithochromones M−T (1–8), along with two known analogues, 9 and 10, were isolated from the strain. The structures were established by detailed analyses of the spectroscopic data. The absolute configuration of the only chiral center in compound 1 was tentatively determined by comparing the experimental and the calculated specific rotations. Compounds 7 and 8 represent the first examples of chromone derivatives featuring a 5,7-dioxygenated chromone moiety with a 9-carbon side chain. Bioassay study revealed that compounds 6–10 exhibited remarkable inhibition against α-glucosidase with IC50 values ranging from 268 to 1017 μM, which are more active than the positive control acarbose (1.3 mmol). 相似文献
10.
Romeo Toko Feunaing Alfred Ngenge Tamfu Abel Joel Yaya Gbaweng Larissa Mekontso Magnibou Fidele Ntchapda Celine Henoumont Sophie Laurent Emmanuel Talla Rodica Mihaela Dinica 《Molecules (Basel, Switzerland)》2023,28(1)
Diabetes mellitus is a metabolic disorder which is one of the leading causes of mortality and morbidities in elderly humans. Chronic diabetes can lead to kidney failure, blindness, limb amputation, heart attack and stroke. Physical activity, healthy diets and medications can reduce the incidence of diabetes, so the search for more efficient antidiabetic therapies, most especially from natural products, is a necessity. Herein, extract from roots of the medicinal plant Pterocarpus erinaceus was purified by column chromatography and afforded ten compounds which were characterized by EIMS, HR-FAB-MS, 1D and 2D NMR techniques. Amongst them were, a new trimeric derivative of epicatechin, named 2,3-Epoxyprocyanidin C1 (1); two pentacyclic triterpenoids, friedelin (2) and betulin (3); angolensin (4); flavonoids such as 7-methoxygenistein (5), 7-methoxydaidzein (6), apigenin 7-O-glucoronide (8) and naringenin 7-O-β-D-glucopyranoside (9); and an ellagic acid derivative (10). The extract and compounds were evaluated for their antidiabetic potential by α-amylase and α-glucosidase inhibitory assays. IC50 values of compound 7 (48.1 ± 0.9 µg/mL), compound 8 (48.6 ± 0.1 µg/mL), compound 9 (50.2 ± 0.5 µg/mL) and extract (40.5 ± 0.8 µg/mL) when compared to that of acarbose (26.4 ± 0.3 µg/mL) indicated good α-amylase inhibition. In the α-glucosidase assay, the extract (IC50 = 31.2 ± 0.1 µg/mL), compound 7 (IC50 = 39.5 ± 1.2 µg/mL), compound 8 (IC50 = 40.9 ± 1.3 µg/mL), compound 1 (IC50 = 41.6 ± 1.0 µg/mL), Compound 4 (IC50 = 43.4 ± 0.5 µg/mL), compound 5 (IC50 = 47.6 ± 0.9 µg/mL), compound 6 (IC50 = 46.3 ± 0.2 µg/mL), compound 7 (IC50 = 45.0 ± 0.8 µg/mL), compound 9 (IC50 = 44.8 ± 0.6 µg/mL) and compound 11 (IC50 = 47.5 ± 0.4 µg/mL) all had moderate-to-good inhibitions, compared to acarbose (IC50 = 22.0 ± 0.5 µg/mL). The ability to inhibit α-amylase and α-glucosidase indicates that P. erinaceus and its compounds can lower blood glucose levels by delaying hydrolysis of carbohydrates into sugars, thereby providing a source of natural antidiabetic remedy. 相似文献
11.
Esa Kukkonen Emilia Josefiina Virtanen Jani Olavi Moilanen 《Molecules (Basel, Switzerland)》2022,27(11)
α-Aminophosphonates, -phosphinates, and -phosphine oxides are a group of organophosphorus compounds that were investigated as extraction agents for rare earth (RE) metals and actinoids for the first time in the 1960s. However, more systematic investigations of their extraction properties towards REs and actinoids were not started until the 2010s. Indeed, recent studies have shown that these α-amino-functionalized compounds can outperform the commercial organophosphorus extraction agents in RE separations. They have also proven to be very efficient extraction and precipitation agents for recovering Th and U from RE concentrates. These actinoids coexist with REs in some of the commercially important RE-containing minerals. The efficient separation and purification of REs is becoming more and more important every year as these elements have a pivotal role in many existing technologies. If one also considers the facile synthesis of α-amino-functionalized organophosphorus extractants and precipitation agents, it is expected that they will be increasingly utilized in the extraction chemistry of REs and actinoids in the future. This review collates α-aminophosphonates, -phosphinates, and -phosphine oxides that have been utilized in the separation chemistry of REs and actinoids, including their most relevant synthetic routes and molecular properties. Their extraction and precipitation properties towards REs and actinoids are also discussed. 相似文献
12.
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases. 相似文献
13.
Driss Ousaaid Hassan Laaroussi Hamza Mechchate Meryem Bakour Asmae El Ghouizi Ramzi A. Mothana Omar Noman Imane Es-safi Badiaa Lyoussi Ilham El Arabi 《Molecules (Basel, Switzerland)》2022,27(2)
The main objective of the current study was to determine the physicochemical properties, antioxidant activities, and α-glucosidase and α-amylase inhibition of apple vinegar produced by artisanal and industrial methods. Apple vinegar samples were analyzed to identify their electrical conductivity, pH, titratable acidity, total dry matter, Brix, density, mineral elements, polyphenols, flavonoids, and vitamin C. The antioxidant activity of apple vinegar samples was evaluated using two tests, total antioxidant capacity (TAC) and DPPH radical scavenging activity. Finally, we determined α-glucosidase and α-amylase inhibitory activities of artisanal and industrial apple vinegar. The results showed the following values: pH (3.69–3.19); electrical conductivity (2.81–2.79 mS/cm); titratable acidity (3.6–5.4); ash (4.61–2.90); °Brix (6.37–5.2); density (1.02476–1.02012), respectively, for artisanal apple vinegar and industrial apple vinegar. Concerning mineral elements, potassium was the most predominant element followed by sodium, magnesium, and calcium. Concerning bioactive compounds (polyphenols, flavonoids, and vitamin C), the apple vinegar produced by the artisanal method was the richest sample in terms of bioactive compounds and had the highest α-glucosidase and α-amylase inhibition. The findings of this study showed that the quality and biological activities of artisanal apple vinegar were more important than industrial apple vinegar. 相似文献
14.
Pullikaparambil Sasidharan Unnikrishnan Andhere Animish Gunabalan Madhumitha Krishnamurthy Suthindhiran Mangalam Achuthananthan Jayasri 《Molecules (Basel, Switzerland)》2022,27(24)
Managing diabetes is challenging due to the complex physiology of the disease and the numerous complications associated with it. As part of the ongoing search for antidiabetic chemicals, marine algae have been demonstrated to be an excellent source due to their medicinal properties. In this study, Ulva reticulata extracts were investigated for their anti-diabetic effect by examining its inhibitory effects on α-amylase, α-glucosidase, and DPP-IV and antioxidant (DPPH) potential in vitro and its purified fraction using animal models. Among the various solvents used, the Methanolic extract of Ulva reticulata (MEUR) displayed the highest antidiabetic activity in both in vitro and in vivo; it showed no cytotoxicity and hence was subjected to bioassay-guided chromatographic separation. Among the seven isolated fractions (F1 to F7), the F4 (chloroform) fraction exhibited substantial total phenolic content (65.19 μg mL−1) and total flavonoid content (20.33 μg mL−1), which showed the promising inhibition against α-amylase (71.67%) and α-glucosidase (38.01%). Active fraction (F4) was further purified using column chromatography, subjected to thin-layer chromatography (TLC), and characterized by spectroscopy techniques. Upon structural elucidation, five distinct compounds, namely, Nonane, Hexadecanoic acid, 1-dodecanol, Cyclodecane methyl, and phenol, phenol, 3,5-bis(1,1-dimethylethyl) were identified. The antidiabetic mechanism of active fraction (F4) was further investigated using various in vitro and in vivo models. The results displayed that in in vitro both 1 and 24 h in vitro cultures, the active fraction (F4) at a concentration of 100 μg mL−1 demonstrated maximum glucose-induced insulin secretion at 4 mM (0.357 and 0.582 μg mL−1) and 20 mM (0.848 and 1.032 μg mL−1). The active fraction (F4) reduces blood glucose levels in normoglycaemic animals and produces effects similar to that of standard acarbose. Active fraction (F4) also demonstrated outstanding hypoglycaemic activity in hyperglycemic animals at a dose of 10 mg/kg B.wt. In the STZ-induced diabetic rat model, the active fraction (F4) showed a (61%) reduction in blood glucose level when compared to the standard drug glibenclamide (68%). The results indicate that the marine algae Ulva reticulata is a promising candidate for managing diabetes by inhibiting carbohydrate metabolizing enzymes and promoting insulin secretion. 相似文献
15.
Huifang Hu Qing Wang Jingwen Du Zhijun Liu Yiluan Ding Hongjuan Xue Chen Zhou Linyin Feng Naixia Zhang 《Molecules (Basel, Switzerland)》2021,26(7)
Aha1 is the only co-chaperone known to strongly stimulate the ATPase activity of Hsp90. Meanwhile, besides the well-studied co-chaperone function, human Aha1 has also been demonstrated to exhibit chaperoning activity against stress-denatured proteins. To provide structural insights for a better understanding of Aha1’s co-chaperone and chaperone-like activities, nuclear magnetic resonance (NMR) techniques were used to reveal the unique structure and internal dynamics features of full-length human Aha1. We then found that, in solution, both the two domains of Aha1 presented distinctive thermal stabilities and dynamics behaviors defined by their primary sequences and three-dimensional structures. The low thermal stability (melting temperature of Aha128–162: 54.45 °C) and the internal dynamics featured with slow motions on the µs-ms time scale were detected for Aha1’s N-terminal domain (Aha1N). The aforementioned experimental results suggest that Aha1N is in an energy-unfavorable state, which would therefore thermostatically favor the interaction of Aha1N with its partner proteins such as Hsp90’s middle domain. Differently from Aha1N, Aha1C (Aha1’s C-terminal domain) exhibited enhanced thermal stability (melting temperature of Aha1204–335: 72.41 °C) and the internal dynamics featured with intermediate motions on the ps-ns time scale. Aha1C’s thermal and structural stabilities make it competent for the stabilization of the exposed hydrophobic groove of dimerized Hsp90’s N-terminal domain. Of note, according to the NMR data and the thermal shift results, although the very N-terminal region (M1-W27) and the C-terminal relaxin-like factor (RLF) motif showed no tight contacts with the remaining parts of human Aha1, they were identified to play important roles in the recognition of intrinsically disordered pathological α-synuclein. 相似文献
16.
Htoo Tint San Nutputsorn Chatsumpun Thaweesak Juengwatanatrakul Natapol Pornputtapong Kittisak Likhitwitayawuid Boonchoo Sritularak 《Molecules (Basel, Switzerland)》2021,26(2)
Four new phenanthrene derivatives, gastrobellinols A-D (1–4), were isolated from the methanolic extract of Gastrochilus bellinus (Rchb.f.) Kuntze, along with eleven known phenolic compounds including agrostophyllin (5), agrostophyllidin (6), coniferyl aldehyde (7), 4-hydroxybenzaldehyde (8), agrostophyllone (9), gigantol (10), 4-(methoxylmethyl)phenol (11), syringaldehyde (12), 1-(4′-hydroxybenzyl)-imbricartin (13), 6-methoxycoelonin (14), and imbricatin (15). Their structures were determined by spectroscopic methods. Each isolate was evaluated for α-glucosidase inhibitory activity. Compounds 1, 2, 3, 7, 9, 13, and 15 showed higher activity than the drug acarbose. Gastrobellinol C (3) exhibited the strongest α-glucosidase inhibition with an IC50 value of 45.92 μM. A kinetic study of 3 showed competitive inhibition on the α-glucosidase enzyme. This is the first report on the phytochemical constituents and α-glucosidase inhibitory activity of G. bellinus. 相似文献
17.
Agnieszka Kicel Anna Magiera Marta Skrzywanek Mariola Malczuk Monika Anna Olszewska 《Molecules (Basel, Switzerland)》2022,27(20)
Cotoneaster species have gained significant importance in traditional Asian medicine for their ability to prevent and treat hyperglycemia and diabetes. Therefore, in this study, some aspects of the beneficial health effects of hydromethanolic extracts of C. bullatus, C. zabelii, and C. integerrimus leaves and fruits were evaluated, including their influence on α-glucosidase, α-amylase, and nonenzymatic protein glycation. The activity was investigated in relation to the polyphenolic profile of the extracts determined by UV-spectrophotometric and HPLC-PDA-fingerprint methods. It was revealed that all leaf and fruit extracts are a promising source of biological components (caffeic acid pseudodepsides, proanthocyanidins, and flavonols), and the leaf extracts of C. bullatus and C. zabelii contain the highest levels of polyphenols (316.3 and 337.6 mg/g in total, respectively). The leaf extracts were also the most effective inhibitors of digestive enzymes and nonenzymatic protein glycation. IC50 values of 8.6, 41.8, and 32.6 µg/mL were obtained for the most active leaf extract of C. bullatus (MBL) in the α-glucosidase, α-amylase, and glycation inhibition tests, respectively. In the kinetic study, MBL was displayed as a mixed-type inhibitor of both enzymes. The correlations between the polyphenol profiles and activity parameters (|r| > 0.72, p < 0.05) indicate a significant contribution of proanthocyanidins to the tested activity. These results support the traditional use of Cotoneaster leaves and fruits in diabetes and suggest their hydrophilic extracts be promising in functional applications. 相似文献
18.
Victor S. Batista Adriano Marques Gonalves Nailton M. Nascimento-Júnior 《Molecules (Basel, Switzerland)》2022,27(23)
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands. 相似文献
19.
Claudio Parra Patricio Muoz Luis Bustos Felipe Parra Mario J. Simirgiotis Hugo Escobar 《Molecules (Basel, Switzerland)》2021,26(7)
The Lamiaceae family is an important source of species among medicinal plants highly valued for their biological properties and numerous uses in folk medicine. Origanum is one of the main genera that belong to this family. The purpose of the study was to determine the phenolic composition of the Origanum vulgare extract and evaluate the antimicrobial, antioxidant, and inhibitory activities of this species that grows in the Andean region of the Atacama Desert. High-performance liquid chromatography was performed to determine the main phenols. Rosmarinic acid was identified as the predominant phenolic compound in this species (76.01 mg/100 g DW), followed by protocatechuic acid, which to our knowledge, no previous study reported similar concentrations in O. vulgare. The oregano extract exhibited a content of total phenolic (3948 mg GAE/100 g DW) and total flavonoid (593 mg QE/100 g DW) with a higher DPPH antioxidant activity (IC50 = 40.58 µg/mL), compared to the same species grown under other conditions. Furthermore, it was found to inhibit α-glucosidase activity with an IC50 value (7.11 mg/mL) lower than acarbose (129.32 mg/mL). Pseudomonas syringae and Pantoea agglomerans (both MIC 0.313 mg/mL and MBC 1.25 mg/mL) were the bacteria most susceptible to oregano extract with the lowest concentration necessary to inhibit bacterial growth. These results open the door for the potential use of this plant to manage chronic diseases, and they expand the knowledge of the species cultivated in arid environmental conditions. 相似文献
20.
Ahmed S. Abu Zaid Ahmed E. Aleissawy Ibrahim S. Yahia Mahmoud A. Yassien Nadia A. Hassouna Khaled M. Aboshanab 《Molecules (Basel, Switzerland)》2021,26(13)
Background: This study aimed to produce, purify, structurally elucidate, and explore the biological activities of metabolites produced by Streptomyces (S.) griseus isolate , a recovered soil bacterium previously screened in our lab that showed promising cytotoxic activities against various cancer cell lines. Methods: Production of cytotoxic metabolites from S. griseus isolate KJ623766 was carried out in a 14L laboratory fermenter under specified optimum conditions. Using a 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined. Bioassay-guided fractionation of the ethyl acetate extract using different chromatographic techniques was used for cytotoxic metabolite purification. Chemical structures of the purified metabolites were identified using mass, 1D, and 2D NMR spectroscopic analysis. Results: Bioassay-guided fractionation of the ethyl acetate extract led to the purification of two cytotoxic metabolites, R1 and R2, of reproducible amounts of 5 and 1.5 mg/L, respectively. The structures of R1 and R2 metabolites were identified as β- and γ-rhodomycinone with CD50 of 6.3, 9.45, 64.8 and 9.11, 9.35, 67.3 µg/mL against Caco2, Hela and Vero cell lines, respectively. Values were comparable to those of the positive control doxorubicin. Conclusions: This is the first report about the production of β- and γ-rhodomycinone, two important scaffolds for synthesis of anticancer drugs, from S. griseus. KJ623766相似文献