首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
首先对3PSU/PU三自由度并联机构进行了结构分析和坐标系建立,在此基础上推导出43项结构参数的误差模型。给定结构参数误差,采用误差模型以及牛顿迭代法分别计算末端位姿,通过比较两组位姿对误差模型进行数值方法验证。最后对机构进行运动学标定和误差补偿实验,其间涉及机构的位姿测量、参数辨识以及误差对比,并观察总结实验结果。通过分析、数值方法和实验验证了所建立的3PSU/PU机构误差模型的正确性。  相似文献   

2.
在非晶带材的生产中,喷嘴包相对于固定的冷却辊的位置和姿态是决定非晶带材质量的关键因素。为了对喷嘴包进行位置和姿态的调整以满足工作要求,因此设计了一种具有串并联特征的六自由度调姿机构。通过D-H法建立了调姿机构的运动学模型,进行了正向、逆向运动学求解,得到末端的位姿矩阵和调姿机构的逆解公式,为调姿机构的位姿调整提供了依据。通过对调姿机构进行位姿的误差分析和灵敏度分析,得到调姿机构末端的位姿误差仿真曲线和各运动参数对位姿误差的灵敏度大小,为提高喷嘴包调姿机构的精度提供了重要的理论依据。  相似文献   

3.
为了提高六自由度工业机器人绝对定位精度,对工业机器人进行了运动学建模,并建立了基于MD-H参数误差的机器人末端定位误差辨识模型,应用激光跟踪仪测量系统采集样本点数据,应用基于奇异值分解的最小二乘法求解辨识模型,以获得几何参数误差,并根据辨识出的误差对机器人末端定位精度进行补偿,实验结果表明,经过辨识和补偿后,工业机器人...  相似文献   

4.
针对4自由度2-RPaRSS并联机构,利用D-H变换矩阵法建立了机构运动学及单条支链的位姿误差模型,并由此得到了机构基于各运动副误差(制造误差、安装误差、磨损误差等)的动平台位姿误差模型;运用该误差模型对2-RPaRSS并联机构的进行了误差分析和计算,给出了机构驱动角对动平台位姿误差的影响情况;同时建立了单支链的误差辨识模型,并由NSGA2算法求得了各误差的近似最优解,通过误差补偿使并联机构的位姿精度得到明显提高。  相似文献   

5.
针对大部分工业机器人结构需要满足Pieper准则无法直接补偿所有运动学参数误差的问题,提出一种两步误差补偿方法。首先,基于修正的D-H法和微分运动学建立机器人定位误差模型,建立机器人末端绝对定位误差与运动学参数误差之间的表达式;其次,利用最小二乘法迭代求解出运动学参数误差,并将可直接补偿的运动学参数误差直接补偿到机器人D-H配置参数中,将剩余的其它运动学参数误差转换为关节转角补偿值进行间接补偿;最后,搭建实验平台,在川崎RS010NA六自由度工业机器人上进行两步误差补偿实验验证。实验结果表明,通过两步误差补偿后机器人末端平均绝对定位误差由5.419 4 mm下降到1.160 5 mm,平均绝对定位精度提高约80%,该方法有效地提高了机器人的绝对定位精度。  相似文献   

6.
《机械传动》2015,(5):6-10
为分析Delta型并联机器人的运动学参数误差对绝对定位精度的影响,建立和求解了位姿误差模型。将并联的传动支链拆分为串联机构,利用D-H变换矩阵求解出运动学模型,将从动臂的微转角引入D-H变换矩阵中,再根据动平台中心位姿误差的唯一性,求解得到用线性方程组表示的位姿误差模型。将某实际Delta型并联机器人的减速器安装端面的角度误差进行模型分析,验证了模型的可靠性。该模型可为Delta型并联机器人的后续精度分析和误差补偿提供分析工具。  相似文献   

7.
建立了六自由度工业机器人的D-H连杆坐标系,由此采用正运动学算法求解出以末端位置矢量和欧拉角表示的末端位姿,采用代数解析法对机器人逆运动学进行求解,并对多解问题用综合优选算法进行筛选从而得到最优解。运用Microsoft Visual C#2015的WPF内置3D渲染建模引擎构建六自由度工业机器人矢量旋转矩阵,采用C#编程语言设计运动控制逻辑。通过生产现场验证了正、逆解及综合优选算法的正确性,并且实现了机器人实时数字3D运动位姿和实际末端位姿保持一致。  相似文献   

8.
针对现有工业机器人定位精度较低,提出了通过机器人运动学标定对误差进行补偿的方法。基于D-H运动学模型和微分变换法建立机器人位姿误差模型,然后对误差模型进行冗余参数分析,消除冗余参数得到可辨识的线性方程,最后用迭代最小二乘法进行求解,修正几何参数进而提高机器人定位精度。通过在自主研发的机器人上试验验证,该方法补偿效果明显,增加了参数辨识的准确性和鲁棒性,为机器人标定技术的发展奠定了一定的基础。  相似文献   

9.
以空间3R含铰间隙机械臂为研究对象,考虑关节铰隙机械臂末端位姿精度的模糊控制方法。首先,利用D-H坐标变换法建立不含间隙和含间隙的机械臂运动学模型,分析铰间隙对机械臂末端位姿精度的扰动影响;其次,通过所建立的含间隙三维模型并进行运动学仿真,研究其位姿误差大小;再次,基于减小误差提高精度设计模糊控制器,通过角位移来补偿末端位姿误差,从而得出相应的角位移补偿量;最后,采用补偿后的角位移对含间隙模型进行运动学仿真分析,得出其补偿后的位姿误差。研究表明,采用模糊控制方法,机械臂在x、y方向上末端位姿误差明显减小,其控制效果较好,而在z方向上的误差也有所降低,可见,在模糊控制策略下,补偿后的角位移对关节铰隙机械臂末端位姿的精度误差有明显的减小作用。  相似文献   

10.
为了提高XYZ-3RPS六轴卧式混联机床的运动学精度,建立了3RPS并联机构的运动学参数误差模型。首先对3RPS并联机构的几何误差源进行了分析。然后基于闭环矢量微分法建立了3RPS并联机构包含铰点位置误差、转动副轴线方向误差、驱动支链零位杆长误差等27项结构参数误差对末端位姿误差的映射模型。最后设计了仿真实验,利用ADAMS的虚拟样机技术,获取机构实际末端位姿误差。通过与误差模型的结果对比,验证了所分析的27项结构参数误差设定值在(0.1~0.2)mm的范围内,误差模型的位置误差求解精度大于0.01mm,姿态误差求解精度大于0.01°。进一步的数值验证表明,误差模型的精度会随着结构参数误差值的减小而显著提高,为3RPS等少自由度并联机构的误差建模和运动学标定提供理论依据。  相似文献   

11.
针对六自由度协作机器人在实际应用中,由于加工、装配、传动和磨损等多方面因素,导致绝对定位精度低的问题,提出一种基于机器人工具末端的运动学误差模型建立方法.在无外部传感设备的条件下根据所设计的标定板,基于最小二乘法和采集的多组机器人实际位姿误差辨识误差模型,对机器人运动学参数与其理论值间的偏差进行补偿.修改底层控制器中参数,修正由于机器人内部机构偏差引起的绝对定位精度误差,提高机器人运行位置精度.  相似文献   

12.
为对六自由度机械臂进行轨迹规划,首先确定对六自由度UR10机械臂进行运动学建模,以齐次变换表述机械臂位姿,在此基础上采用D-H参数法对该机械臂进行位姿分析,并建立UR10机械臂运动学的数学模型。通过MATLAB机器人工具箱建立模型并对其进行仿真研究,得到其关节位置、速度及加速度的变化图和末端轨迹,最后通过五次多项式插值的方法对关节空间进行轨迹规划。仿真结果表明:所建立机械臂模型运行平稳,模型建立正确。  相似文献   

13.
在Denavit-Hartenberg参数法建立的机器人末端位姿变换方程的基础上,利用机构通用精度算法建立了机器人末端位姿误差模型。通过矩阵运算,建立了机器人末端位姿误差与各杆件运动学参数误差之间的函数关系式。在SCARA机器人上的实验表明,用此方法建立的误差模型进行误差标定和补偿,可以提高机器人的定位精度。  相似文献   

14.
《机械传动》2015,(9):32-36
针对工业机器人绝对定位精度较低,提出通过D-H法建立机器人运动学误差模型的补偿方法,因为机器人结构需满足Pieper准则,所以只考虑了机器人误差模型参数中的关节旋转角参数对机器人末端误差的影响,利用最小二乘法辨识出误差模型中真实的关节旋转角从而补偿误差,同时又利用圆周法对机器人误差进行二次补偿,最终将两次修正后的参数补偿到控制器中从而提高机器人的绝对定位精度。该方法在自主研发的六自由度工业机器人上得到验证,定位精度从补偿前的3.55~4.45 mm提高到补偿后的0.924~1.242 mm,补偿效果明显,为机器人精度研究提供了可靠依据。  相似文献   

15.
为了简化六自由度并联机构的参数标定过程,提高标定效率,降低标定成本,提出了基于正交位移测量系统的位姿测量装置及方法。首先,研究了该装置的位姿解算方法,利用空间解析几何的方法,求解其运动学正解与逆解。其次,利用微小位移合成法,建立了并联机构及正交位移测量系统组合体的误差模型。然后,基于误差模型,构建了组合体参数误差辨识的最优化问题数学模型,其中,传感器示值的平方和最小为目标函数,组合体的结构参数误差为设计变量。最后,利用正交位移测量系统对六自由度并联机构位姿进行测量,利用OASIS奥希思软件直接搜索出参数误差最优解,将其补偿到并联机构控制系统中,完成并联机构的参数标定。标定前后位姿误差对比表明:最大位置误差降低了58%~96%,最大姿态误差降低了92%~97%。利用正交位移测量系统进行并联机构参数标定,不仅可有效提升并联机构的定位精度,还可有效简化标定工作,提升标定效率,降低标定成本。  相似文献   

16.
以D-H变换矩阵为建模工具,采用环路增量法,建立了包含杆件D-H参数的球面5R并联机构的误差模型,该模型不仅考虑了机构的结构参数误差,还考虑了由于加工和装配等原因出现的各转动副轴线和球心之间的偏差,使得误差模型更接近于工程实际;根据误差模型进一步计算得到了各从动件运动参数误差以及轴向间隙量的显式函数关系;最后对该机构进行灵敏度分析,研究了各几何误差源对该机构末端执行器位姿误差的影响程度。研究结果为该机构样机的标定、运动学补偿及应用提供了理论基础。   相似文献   

17.
基于D-H矩阵的Stewart型并联机床位姿误差计算模型   总被引:5,自引:0,他引:5  
针对6自由度Stewart型并联机床,以D-H变换矩阵为建模工具,建立起包含铰座位姿参数、杆件D-H参数的机床动平台位姿方程.采用矩阵微分方法推导出一个机床位姿误差线性化计算模型.该模型不仅使铰座位姿参数误差、杆件D-H参数误差等几何误差全部进入机床位姿误差计算方程,而且将机床位姿误差与几何误差之间的非线性隐式函数关系简化为线性显式函数关系.基于支链杆长方程建立起一个能描述机床位姿误差与几何误差之间实际映射关系的非线性计算模型,以其作为参考模型对线性化计算模型的有效性进行检验.仿真表明:在小误差条件下,线性化模型可以很好地逼近非线性模型,由于具有形式简洁、分析与计算方便等特点,基于D-H变换矩阵的位姿误差线性化计算模型可用于Stewart型并联机床的精度分析、精度综合及运动学标定.仿真结果还表明:当对机床位姿精度要求较高时,需要考虑杆件的全部D-H参数误差对机床位姿的影响.  相似文献   

18.
提出了一种简单实用、成本较低的基于平面约束的机器人误差补偿方法,首先利用改进的D-H法建立机器人运动学模型并通过微分变换原理得到误差传递雅可比矩阵,通过控制机器人末端执行器对标准平面进行示教,根据所测点理论上都处于同一平面这一特性建立机器人参数误差辨识模型。为避免辨识雅可比矩阵出现奇异而导致模型求解不完整,采用了Levenberg-Marquardt算法对普通的最小二乘法进行修正,对误差模型进行求解。最后将求解的参数误差补偿到控制器中从而提高机器人定位精度,并通过试验验证了该方法的有效性。  相似文献   

19.
将一种少自由度并联机构3-PRS用作飞行模拟运动平台,为使该平台运动精度满足系统要求,对其进行误差分离与灵敏度分析。通过研究平台运动学逆解模型获得驱动雅克比矩阵与约束雅克比矩阵,采用空间闭环误差矢量链的误差建模方法,对运动平台进行误差建模,获得各个几何误差源与终端输出位姿误差之间的映射函数,在所建立的全误差源模型的基础上,利用解析法去除冗余误差源后,借助驱动雅克比矩阵与约束雅克比矩阵将影响该平台末端可补偿位姿误差的误差源和不可补偿位姿误差的误差源分离。最后,在整个运动空间内,借助灵敏度分析,获得影响末端不可补偿位姿误差源的全局灵敏度影响系数。根据灵敏度影响系数可指导前期设计阶段各零部件公差等级的选择以及装配阶段装配公差的确定,研究结果对同类少自由度并联机构具有指导意义。  相似文献   

20.
针对D-H参数法求解RPRRP型弹药装填机器人正向运动学过程复杂、效率低的问题,提出了基于POE法的弹药装填机器人正向运动学求解方法。建立了弹药装填机器人的机构模型和旋量参数,计算了各关节的运动旋量,采用POE法进行正向运动学求解。采用D-H参数法进行运动学仿真,得到了不同关节输入下的弹药装填机器人的位姿变换,通过结果对比验证了POE法求解弹药装填机器人正向运动学的正确性,分析了POE法相对于D-H参数法的优越性,探讨了POE法与D-H参数法的内在联系,并在此基础上得到了求解旋量坐标的新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号