首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human blood biomonitoring campaign to detect the environmental exposure to metals (Cd, Cu, Cr, Mn, Pb and Zn) in 265 subjects was performed in the South-Western part of Sardinia (an Italian island) that is a particular area with a great history of coal and metal mining (Pb/Zn mainly) activities and large industrial structures (as metallurgy). Subjects living near the industrial plant area had geometric means (GM) of blood Cd (0.79 μg/l), Cu (971 μg/l), Mn (12.2 μg/l), and Pb (55.7 μg/l) significantly higher than controls (Cd, 0.47 μg/l; Cu, 900 μg/l; Mn 9.98 μg/l; Pb, 26.5 μg/l) and than people living nearby the past mining sites. Subjects living next to one dismissed mine were statistically higher in blood Cu (GM, 1,022 μg/l) and Pb (GM, 41.4 μg/l) concentrations than controls. No differences were observed in people living in the different mining sites, and this might be related to the decennial disclosure of mines and the adoption of environmental remediation programmes. Some interindividual variables influenced blood biomonitoring data, as smoke and age for Cd, gender for Cu, age, sex and alcohol for Pb, and age for Zn. Moreover, blood metal levels of the whole population were similar to reference values representative of the Sardinian population and acceptably safe according to currently available health guidelines.  相似文献   

2.
3.
We analyzed national data on blood lead levels (BLL) and blood cadmium levels (BCL) in residents living near 38 abandoned metal mining areas (n?=?5,682, 18–96 years old) in Korea that were collected by the first Health Effect Surveillance for Residents in Abandoned Metal mines (HESRAM) from 2008 to 2011. The geometric mean BCL and BLL were 1.60 μg/L (95 % CI?=?1.57–1.62 μg/L) and 2.87 μg/dL (95 % CI?=?2.84–2.90 μg/dL), respectively, notably higher than levels in the general population in Korea and other countries. We found significantly higher BLL and BCL levels in people living within 2 km of an abandoned metal mine (n?=?3,165, BCL?=?1.87 μg/L, BLL?=?2.91 μg/dL) compared to people living more than 2 km away (n?=?2,517, BCL?=?1.31 μg/L, BLL?=?2.82 μg/dL; P?<?0.0001) and to the general population values reported in the literature.  相似文献   

4.
Wastewater and soil samples were collected from the industrial area of Ghaziabad City, India from January 2005 to December 2007 and were analyzed for the presence of heavy metals by atomic absorption spectrophotometry. Test samples revealed high levels of Fe, Cr, Cu, Ni, Zn, and Cd as 967.03, 34.63, 27.97, 19.7, 16.70, and 3.20 mg/L of wastewater, respectively. The concentrations of inorganic minerals were higher in the soil samples irrigated with wastewater. Total coliforms were found to be maximum (1,133 × 104 most probable number per 100 mL) during spring and summer followed by winter and postmonsoon in the wastewater samples. The microbial count in soil as well as in wastewater decreases as the metal concentration increases. The concentration 200 μg/mL of nickel and cadmium inhibits majority of the population, while, at some points, it inhibits 100% of the population. The exponential decay model for microbial count at the increasing metal concentrations indicate that asymbiotic N2 fixers were best fitted to the model. In all the seasons, the order of decline in terms of exponential decay of the population of different microbial groups in soil was asymbiotic N2 fixers > actinomycetes > fungi > aerobic heterotrophic bacteria. The different microbial groups that have different values of slope in different seasons indicate that the resistant population of microorganisms was variable with seasons.  相似文献   

5.
An investigation using in situ analysis by portable X-ray fluorescence (PXRF) has shown that contamination present on industrial buildings at a heritage arsenic works site near Redruth, Cornwall, UK results from the absorption of arsenic by porous and semi-porous building materials that were in contact with arsenic-rich flue gases. Results from a preliminary survey indicate that arsenic remains locked in these materials and is being gradually leached out by weathering processes. This weathering causes general contamination of the adjacent building surfaces averaging 1845 microg g(-1) arsenic, presumably caused by evaporation of leach solutions in contact with air at the surface of the building materials. More extensive crystalline deposits were found under arches protected from dissolution and further dispersion by rain water. These deposits appeared to comprise calcium sulfate (gypsum), associated with on average between 1.2 and 6.8% m/m As. In situ PXRF proved to be highly effective in locating sources of contamination at the site and in providing data that allowed a hypotheses for the origin of this contamination to be formulated and tested in the field.  相似文献   

6.
The concentration of As, Cr and Ni and their speciation (As3+;5+, Cr3+;6+ and Ni0;2+) in milled coal, bottom ash and ash collected by electrostatic precipitator (ESP) from a coal fired-power plant in western Canada were determined using HGAAS, ICP-AES and XANES. The chemical fractionation of these elements was also determined by a sequential leaching procedure, using deionized water, NH4OAC and HCI as extracting agents. The leachate was analyzed by ICP-AES. Arsenic in the milled coal is mostly associated with organic matter, and 67% of this arsenic is removed by ammonium acetate. This element is totally removed from milled coal after extraction with HCI. Arsenic occurs in both the As3+ and the As5+ oxidation states in the milled coal, while virtually all (>90%) of the arsenic in bottom ash and fly ash appears to be in the less toxic arsenate (As5+) form. Both Ni and Cr in the milled coal are extracted by HCI, indicating that water can mobilize Ni and Cr in an acidic environment. The chromium is leached by water from fly ash as a result of the high pH of the water, which is induced during the leaching. Ammonium acetate removes Ni from bottom ash through an ion exchange process. Chromium in milled coal is present entirely as Cr3+, which is an essential human trace nutrient. The Cr speciation in bottom ash is a more accentuated version of the milled coal and consists mostly of the Cr3+ species. Chromium in fly ash is mostly Cr3+, with significant contamination by stainless-steel from the installation itself.  相似文献   

7.
8.
Concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium were examined in the down feathers and eggs of female common eiders (Somateria mollissima) from Amchitka and Kiska Islands in the Aleutian Chain of Alaska to determine whether there were (1) differences between levels in feathers and eggs, (2) differences between the two islands, (3) positive correlations between metal levels in females and their eggs, and (4) whether there was more variation within or among clutches. Mean levels in eggs (dry weight) were as follows: arsenic (769 ppb, ng/g), cadmium (1.49 ppb), chromium (414 ppb), lead (306 ppb), manganese (1,470 ppb), mercury (431 ppb) and selenium (1,730 ppb). Levels of arsenic were higher in eggs, while chromium, lead, manganese, and mercury were higher in feathers; there were no differences for selenium. There were no significant interisland differences in female feather levels, except for manganese (eider feathers from Amchitka were four times higher than feathers from Kiska). Levels of manganese in eggs were also higher from Amchitka than Kiska, and eider eggs from Kiska had significantly higher levels of arsenic, but lower levels of selenium. There were no significant correlations between the levels of any metals in down feathers of females and in their eggs. The levels of mercury in eggs were below ecological benchmark levels, and were below human health risk levels. However, Aleuts can seasonally consume several meals of bird eggs a week, suggesting cause for concern for sensitive (pregnant) women.  相似文献   

9.
The concentrations of indicator polychlorinated biphenyls (PCBs No. 28, 52, 101, 138, 153 and 180) and organochlorine pesticides (HCB, p,p′-DDE and p,p′-DDT) in 121 blood serum specimens collected from non-occupationally exposed adults living in contaminated and comparison areas were determined using high-resolution gas chromatography/electron capture detection (HRGC/ECD). The sum of the serum concentrations of the three most abundant PCB congeners (No. 138, 153 and 180) found in participants (N?=?81) living in industrial areas near incinerators, metallurgical and chemical plants (Krompachy, Kosice, Nemecka and Sala) was significantly higher (p?N?=?40). Similarly, significant differences were observed for p,p′-DDE (p?p?U test between groups showed that the difference for HCB was not statistically significant (p?=?0.089). Age was positively correlated with the sum of PCBs (No. 138, 153 and 180), HCB and the sum of p,p′-DDE and p,p′-DDT (p?相似文献   

10.
Lead,cadmium, arsenic and zinc in the ecosystem surrounding a lead smelter   总被引:2,自引:0,他引:2  
A lead smelter has been operating at Belledune in the province of New Brunswick, in eastern Canada, since 1966. This paper presents data on the concentrations of the four primary metals emitted from the smelter — lead, cadmium, arsenic and zinc — which were measured in the terrestrial environment near the smelter and the concentrate transport route. Deposition of these metals to the snowpack and the uptake by grass forage are discussed in relation to non-regulatory guidelines, toxicity and atmospheric emissions. A 1992 snowpack transect survey extending 0.5–40 km northwest, southeast and south of the smelter revealed lead concentrations of 2–3193 ppb, cadmium <0.10–49.7 ppb, arsenic <3.0–72.0 ppb, and zinc 3–401 ppb. Deposition estimates within this zone for lead were between 0.046 and 20.1 kg/ha/yr, cadmium <0.007 and 313 g/ha/yr, arsenic <0.016 and 453 g/ha/yr and zinc 0.020 and 2.52 kg/ha/yr. Concentrations of these metals in the snowpack were highest within 3 km of the smelter and were detectable at greater distances SE of the smelter. Lead was dispersed greater distances from the smelter than cadmium or arsenic. Snowpack samples collected within 5–20 m of the railway contained 140–7270 ppb of lead, 0.4–36.9 ppb of cadmium, <3.0–72.0 ppb of arsenic and 41–13100 ppb of zinc. Grass forage sampled within 0.6–16 km of the smelter contained lead 5–152 ppm, cadmium 0.10–4.1 ppm, and zinc 22–154 ppm. Highest concentrations of lead, cadmium and zinc in grass forage were found were found within 2.2 km of the smelter. Grass forage collected within 10–70 m of the railway contained lead 13–288 ppm, cadmium 0.4–1.3 ppm and zinc 98–831 ppm.  相似文献   

11.
As part of our efforts to find effective methods to the drinking water risk management, the health risk assessment of arsenic and cadmium in groundwater near Xiangjiang River was analyzed. The results suggest that although the arsenic and cadmium concentrations in 97% of groundwater sources are less than the requirement of Water Quality Standards for Drinking Water (GB5749-2006) in China, the residents served by almost all of the investigated centralized drinking water sources have a significant potential health risk by consumption, especially cancer risk. It is justified through analyses that risk assessment is an effective tool for risk management, and the maximum permissible concentration of arsenic and cadmium in drinking water (0.01 and 0.005?mg L-1, respectively) is suitable for China at present, considering the current economic status of China. Risk managers develop cleanup standards designed to protect against all possible adverse effects, which should take into account highly exposed individuals, effects of mixtures of toxic substances, attendant uncertainties, and other factors such as site-specific (or generic) criteria, technical feasibility, cost?Cbenefit analyses, and sociopolitical concerns.  相似文献   

12.
This research was carried out in the cities of Zonguldak and Eregli, which have been characterized as urban and industrial environments of the Western Black Sea Region, Turkey, in order to assess the contamination of polycyclic aromatic hydrocarbons (PAHs) using mosses as biomonitors. The methodology involved the collection of moss samples (Hypnum cupressiforme), ultrasonic extraction with dichloromethane, cleanup using silica gel and analysis by liquid chromatography with ultraviolet detection. The total PAH concentrations ranged from 78.1 to 1693.5 ng g?1 in Zonguldak and from 15.2 to 275.1 ng g?1 in Eregli. The total PAH concentration in Eregli was about six times lower than that in Zonguldak, revealing the importance of switching from coal to natural gas in residential heating. The diagnostic ratios and the correlation analysis have indicated that coal combustion and traffic emissions were the major PAH sources at both sites. The contour maps were constructed for the determination of spatial distributions of total PAHs, and it was shown for Zonguldak as well as for Eregli that the PAH pollution was much more predominant in highly populated regions. Moving away from the city centres, a gradual decrease in PAH pollution rates was observed.  相似文献   

13.
The extent to which smokeless tobacco endangers human health is an ongoing subject of debate. In this study, concentrations of toxic metals, cadmium (Cd), lead (Pb), and nickel (Ni), were measured in different snuff products (dry brown and black and moist green and brown), available and consumed in Pakistan. Concentrations of Cd, Pb, and Ni were determined in 23 samples of various brands of snuff by electrothermal atomic absorption spectrometry, after microwave-assisted acid digestion. The reliability of methodology was assured by analyzing certified reference material. The resulted data of toxic metals in different snuff products are comparable to the existing information with limited exceptions. It was estimated that 10 g intake of different types of snuff could contribute 14–68, 17–47, and 20–73 % of the provisional maximum tolerable daily intake for Cd, Ni, and Pb, respectively.  相似文献   

14.
Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking–cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p?=?0.04) from 26 μg L?1 in summer to 6 μg L?1 in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day ?1) and female (2.6 and 1.2 L day?1) participants from summer to winter. Arsenic intake through drinking water decreased (p?=?0.04) in winter (29 μg day?1) than in summer (100 μg day?1), and urinary arsenic concentration decreased (p?=?0.018) in winter (41 μg L?1) than in summer (69 μg L?1). Dietary arsenic intake remained unchanged (p?=?0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.  相似文献   

15.
Risk assessment of metal-contaminated soil depends on how precisely one can predict the solubility of metals in soils. Responses of plants and soil organisms to metal toxicity are explained by the variation in free metal ion activity in soil pore water. This study was undertaken to predict the free ion activity of Zn, Cu, Ni, Cd, and Pb in metal-contaminated soil as a function of pH, soil organic carbon, and extractable metal content. For this purpose, 21 surface soil samples (0–15 cm) were collected from agricultural lands of various locations receiving sewage sludge and industrial effluents for a long period. One soil sample was also collected from agricultural land which has been under intensive cropping and receiving irrigation through tube well water. Soil samples were varied widely in respect of physicochemical properties including metal content. Total Zn, Cu, Ni, Cd, and Pb in experimental soils were 2,015?±?3,373, 236?±?286, 103?±?192, 29.8?±?6.04, and 141?±?270 mg kg?1, respectively. Free metal ion activity, viz., pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+, as estimated by the Baker soil test was 9.37?±?1.89, 13.1?±?1.96, 12.8?±?1.89, 11.9?±?2.00, and 11.6?±?1.52, respectively. Free metal ion activity was predicted by pH-dependent Freundlich equation (solubility model) as a function of pH, organic carbon, and extractable metal. Results indicate that solubility model as a function of pH, Walkley–Black carbon (WBC), and ethylenediaminetetraacetic acid (EDTA)-extractable metals could explain the variation in pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+ to the extent of 59, 56, 46, 52, and 51 %, respectively. Predictability of the solubility model based on pH, KMnO4-oxidizable carbon, and diethylenetriaminepentaacetic acid-extractable or CaCl2-extractable metal was inferior compared to that based on EDTA-extractable metals and WBC.  相似文献   

16.
Consumption of contaminated food is a major route of exposure to toxic contaminants for humans. To protect against potential negative health effects from rice consumption, As and Cd concentrations in rice sold in Bangkok were determined, and non-carcinogenic and carcinogenic risk assessments were conducted. Four types of rice (n = 97), namely, white jasmine, white, glutinous, and brown jasmine, were collected. Samples were acid-digested and analyzed for total concentrations of As and Cd by ICP-MS. The average concentrations of As and Cd were 0.205 ± 0.008 and 0.019 ± 0.001 mg kg?1, respectively. Approximately 22.8, 62.5, and 57.1% of white, white jasmine, and brown jasmine rice, respectively, contained As concentrations exceeding the Codex inorganic As standards for polished and unpolished rice. Brown jasmine rice contained significantly higher As concentrations than the other types of rice. However, Cd concentrations in all rice samples were significantly lower than the Codex standard of 0.4 mg kg?1. Children are exposed to the highest amounts of both elements. Concerning As exposure through the consumption of different types of rice in the same age group, the consumption of brown jasmine rice caused approximately 1.7 to 2.3 times higher As exposure rates compared to the consumption of other types of rice. Non-carcinogenic risks (hazard quotient (HQ)) of As exposure from all types of rice were higher than the threshold limit of 1. HQ in children ranging from 2.1 to 4.9 was significantly higher than HQ in the other age groups. The cancer risks from As exposure were negligible in all groups.  相似文献   

17.
An attempt has been made in this study to evaluate the groundwater quality in two industrial blocks of Ghaziabad district. Groundwater samples were collected from shallow wells, deep wells and hand pumps of two heavily industrialized blocks, namely Bulandshahar road industrial area and Meerut road industrial area in Ghaziabad district for assessing their suitability for various uses. Samples were collected from 30 sites in each block before and after monsoon. They were analyzed for a total of 23 elements, namely, Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, U, V, and Zn. In addition to these elements, some other parameters were also studied viz: color, odor, turbidity, biological oxygen demand, chemical oxygen demand (COD), dissolved oxygen, total dissolved solids and total suspended solid. The water quality index was also calculated based on some of the parameters estimated. Out of the 23 elements, the mean values of 12 elements, namely, Al, As, Ca, Cd, Cr, Mg, Mn, Na, Ni, Pb, Se, and U, were higher than the prescribed standard limits. The concentrations (in milligram per liter) of highly toxic metals viz., Al, As, Cd, Cr, Ni, Pb, Se, and U, ranged from 1.33–6.30, 0.04–0.54, 0.005–0.013, 4.51–7.09, 0.14–0.27, 0.13–0.32, 0.16–2.11, and 0.10–1.21, respectively, in all groundwater samples, while the permissible limits of these elements as per WHO/BIS standards for drinking are 0.2, 0.01, 0.003, 0.05, 0.07, 0.01, 0.04, and 0.03 mg L?1, respectively. The EC, pH, and COD in all samples varied from 0.74–4.21, 6.05–7.72, and 4.5–20.0 while their permissible limits are 0.7 dS m?1, 6.5–8.5, and 10 mg L?1, respectively. On the basis of the above-mentioned parameters, the water quality index of all groundwater samples ranged from 101 to 491, and 871 to 2904 with mean value of 265 and 1,174 based on two criteria, i.e., physico-chemical and metal contaminations, respectively while the prescribed safe limit for drinking is below 50. The results revealed that the groundwater in the two blocks is unfit for drinking as per WHO/BIS guidelines. The presence of elements like As, Se, and U in toxic amounts is a matter of serious concern.  相似文献   

18.
Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined.  相似文献   

19.
In the assessment of human health risk, the obtainment of reference values in biological tissues and/or fluids is crucial to estimate the type and magnitude of occupational and environmental exposure. In this context, urine is the major excretion route for many noxious substances that have entered the organism and can be viewed as one of the most useful materials for biomonitoring campaigns. In this study, reference concentration ranges for Cr, Ni and V in urine were achieved in a sub-population of 131 youngsters, aged 6-10, attending primary schools in the urban area of Rome. Subjects under drug therapy or affected by any pathological diseases were not included in this investigation. Strict precautions against contamination or loss of the analytes of interest were adopted for all steps. Determinations were performed by means of high resolution inductively coupled plasma mass spectrometry. In general, the natural log-transformed concentration data for the three elements investigated conformed to a satisfactorily normal distribution. The estimated reference ranges were as follows (microg g(-1) creatinine): Cr, 0.07-0.76; Ni, 0.20-1.23; V, 0.02-0.22. The sex of the youngsters was tentatively treated as a statistical explanatory variable using the Fischer F-test on variance.  相似文献   

20.
Asian clam Corbicula fluminea, the amphipod Dikerogammarus villosus and the macrophyte Nuphar lutea were tested for investigating spatial and temporal variability in the bioavailability of tin and arsenic in the River Lippe, Germany. Samples were collected from September 2002 to May 2003 at a tin polluted site (source pollution) and a reference site. Additional screening sampling was carried out twice in April 2003 to test the extent of As and Sn concentration in periphyton (aufwuchs) samples. Accumulated Sn and As concentrations were measured with ICP-MS after sample processing (dissection, cryo-milling) and digestion. Quality control was performed by parallel analysis of three certified reference materials. Measurable As and Sn contents in plant tissues were only detectable in roots (below 30 microg kg(-1) and 20 microg kg(-1) for As and Sn, respectively). Homogenates from C. fluminea and D. villosus tissues showed site-dependent trace metal contents. Elevated bioavailability of Sn is present downstream of the sewage discharge of the world's biggest producer of tributyltin (TBT) at Luenen (northern Ruhr region). In comparison to C. fluminea, D. villosus shows higher concentrations of tin in samples from both sites. Arsenic concentrations in C. fluminea remain constant with increasing shell size, whereas tin shows a size-dependent accumulation. The results indicate that Corbicula fluminea and Dikerogammarus villosus are suitable passive biomonitoring organisms for Sn, but As levels might be actively regulated. The concentration of tin in the periphyton (aufwuchs) samples was found to be much higher in samples from a contaminated site (428 +/- 63 vs. 1949 +/- 226 microg kg(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号