首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since heat flux increases sharply yet cooling space in microelectronic and chemical products gradually decreases, a micro heat pipe has been an ideal device for heat transfer for high heat-flux products, and its performance depends largely on its capillary limit. This study proposed an integrated utilization of the advantages of lower backflow resistance to working fluid in trapezium-grooved-wick micro heat pipes and greater capillary force in sintered-wick micro heat pipes; first the factors that are crucial to both types’ heat transfer performances were analyzed, and then mathematical modeling was built for capillary limit of a micro heat pipe with the compound structure of sintered wick on trapezium-grooved substrate, and finally heat transfer limits for micro heat pipes with a trapezium-grooved wick, a sintered wick and with a compound structure were tested through experiments. Both the theoretical analysis and experimental results show that for a micro heat pipe with proposed compound structure, its capillary limit is superior to that of a micro heat pipe with a simplex sintered wick or trapezium-grooved wick.  相似文献   

2.
We investigate the behaviour of a liquid jet stimulated by pressure disturbances using a photometric measurement of the jet shadow width. Two apparatuses involving lights of different nature are utilized and measurements are taken from the exit of the nozzle to drop breakoff for different operating conditions. Fourier analysis is applied to characterize the spatial evolution of the jet shape. In contrast to previous studies where only amplitudes of the Fourier modes are reported, phase shifts are also recovered for low and high initial perturbations. We show that the spatial reconstruction of the jet from the temporal Fourier analysis at different abscissae is in excellent agreement with the experimental profilesThis paper has benefited from stimulating discussions with A. Spohn. The authors wish to thank the Management of Toxot Science & Applications for permission to publish this work. They extend their appreciation to the Centre National de la Recherche Scientifique (Contracts No. 509721 and 509776) and to the Ministère de l'Enseignement Supérieur et de la Recherche (Grant No. 92 P 0645) for partially supporting this study. Thanks are due to J.L. Bély and C. Marteau for their technical assistance. Finally the authors are indebted to the referees for their valuable comments.  相似文献   

3.
This paper reports on an experimental investigation of the thermal properties behavior of 0.5 wt% silver nanoparticle-based nanofluids (NF) containing oleic acid (OA) and potassium oleate surfactant (OAK+) with concentrations of 0.5, 1, and 1.5 wt% respectively. The experiments were conducted from 20 °C to 80 °C. It was shown that the NF with 1 wt% OAK+ yielded the highest thermal behavior enhancement of about 28% at 80 °C compared to deionized water. The thermal performance had higher than the base fluid/nanofluids at approximately 80%. Moreover, the NF containing OAK+ showed higher thermal conductivity and dynamics of specific heat capacity than deionized water in all of the experimental conditions in this study. The rheological experiment showed that viscosity of NF was significantly dependant on temperature. As shear rate increased, the shear stress of the NF increased; however, the viscosity of the nanofluids decreased first and then stabilized. It was further found that NF containing OAK+ at a range of operating temperatures produced Newtonian behavior.  相似文献   

4.
5.
An experimental investigation is conducted on the two-dimensional punch problem for isotropic materials and unidirectional fiber-reinforced composite materials under quasi-static and impact loading. Singular stresses are generated in the specimen near the punch corners, and the stress intensity factorK Iis introduced to describe the singular stress field. Laser interferometry is used to measure in-plane stresses (transmission mode) and out-of-plane displacements (reflection mode) and then estimate the stress intensity factor. In the dynamic case, a high-speed photography technique was employed to capture the transient response of the specimen and measureK(t) just after the impact. In all the cases, a good agreement between the measurements ofK and theoretical predictions was found.  相似文献   

6.
7.
Aluminum nitride nanoparticles (AlNs) have been found to be a good additive for enhancing the thermal conductivity of traditional heat exchange fluids.At a volume fraction of 0.1,the thermal conductivity enhancement ratios are 38.71% and 40.2%,respectively,for ethylene glycol and propylene glycol as the base fluids.Temperature does not have much influence on the enhanced thermal conductivity ratios of the nanofluids,though a volume fraction of 5.0% appears to signify a critical concentration for rheology:fo...  相似文献   

8.
Nansha Gao  Hong Hou 《力学快报》2021,11(1):100221
A composite absorber made of a polyurethane sponge and multi-layer micro-perforated plates is presented in this study. Results from an acoustic impedance tube test show that the polyurethane sponge can exhibits higher low-frequency sound absorption in front of the micro-perforated plate, while sound absorption at medium and high-frequencies remains low. The physical mechanism behind this is that the micro-perforated plate increases the denpth cavity. If the polyurethane sponge is placed behind the micro-perforated plate, the amplitude of the original absorption peak will remain constant, but the absorption peaks will shift to lower frequencies. The reason for this phenomenon is that porous materials with low flow resistance can be approximately equivalent to fluid, which not only does not affect the resonance absorption coefficient of micro-perforated plate, but also makes the peaks move to low frequency. This study has the potential applications in the sound absorption design of composite structure.  相似文献   

9.
双层夹芯复合材料结构横向冲击响应实验   总被引:1,自引:0,他引:1  
采用玻璃纤维增强环氧树脂复合材料层合板作为内、外面板,以PVC泡沫作为芯材,构造了双层夹芯复合材料结构。采用落锤冲击实验,得到了冲击过程的撞击力历史;研究了在不同的冲击能量下,双层夹芯结构的冲击响应及内面板位置对双层夹芯结构冲击响应的影响。实验结果表明,内面板的引入及内面板的位置显著影响双层夹芯结构的撞击力历史,根据该撞击力历史可以优化设计出抗冲击性能优异的新型双层夹芯复合材料结构。  相似文献   

10.
An experimental investigation was made to determine if a transient-thermal-stress distribution could be effectively analyzed using scattered-light photoelasticity. the problem selected for investigation was a solid sphere at one temperature subjected to a spherical symmetric temperature distribution at a different temperature. The results and techniques are discussed.  相似文献   

11.
This paper reports the results of extensive experimental studies of the effects of well-defined heterogeneous porous media on immiscible flooding. The heterogeneities were layers and lenses, with some of the lenses being a wettability contrast. Drainage and imbibition displacements, with and without an initial residual fluid saturation, were carried out at a variety of flow rates on layered and lensed two-dimensional glass beads models of the size of a typical large core test (58×10×0.6 cm). These displacements were followed photographically and the effluent saturation profiles recorded. In most of the experiments the glass beads were water-wet, but in some the lens beads were coated with a water repellent chemical. In all experiments, the displacement fronts became highly irregular due to the different capillary pressures acting in the different areas of the models. In this paper, these displacements are fully reported and their implications for reservoir simulation and for interpretation of laboratory core tests, where the inner heterogeneities are not known, are discussed.  相似文献   

12.
13.
铝质舰体轻型复合装甲试验研究   总被引:2,自引:0,他引:2  
以纤维增强复合材料(FRP)层合板前置铝板模拟铝质舰体轻型复合装甲结构,对采用不同增强纤维FRP层合板有间隙复合装甲结构进行7.62 mm制式尖头弹打靶试验。基于FRP抗弹机理的分析,着重讨论了入射角度和增强纤维种类对组合装甲结构抗弹性能的影响,对铝质舰体设置轻型复合装甲以抵御小口径武器攻击的可行性进行评估。  相似文献   

14.
舰船舷侧复合装甲结构抗动能穿甲模拟实验   总被引:3,自引:0,他引:3  
以均质钢板前置复合材料板模拟舰船舷侧复合装甲结构,结合低速弹道冲击实验,分析了结构的 破坏模式和吸能机理,比较了复合材料板与均质钢板的抗弹性能。在此基础上,根据靶板破坏模式,得到了球 头弹穿透组合靶板的剩余速度预测公式,并与实验结果进行了比较。结果表明,复合材料板的面密度吸能远 大于均质钢板的;组合靶板中前置复合装甲板的破坏模式主要为纤维拉伸断裂,而钢质背板则由于前置复合 装甲板的影响,破坏模式主要为花瓣开裂破坏;将剩余速度理论预测值与实验数据进行比较,两者吻合较好。  相似文献   

15.
16.
Side forces on slender bodies of revolution at medium to high angles of attack (AOA > 30°) has been known from a large number of investigations. Asymmetric vortex pairs over a slender body are believed to be the principle cause of the side forces. Under some flight conditions, this side force may be as large as the normal force acting on the slender body. In this paper, experimental results are presented for side force control on a cone-cylinder slender body by using microfabricated balloon actuators. The micro balloon actuators are made of polydimethylsiloxane (PDMS) elastomer by using micro molding techniques. They can be packaged on curve surfaces of a cone-cylinder slender body. As actuator is actuated, the micro balloon actuator inflates about 1.2 mm vertically, which is about 2.4% of the cylinder diameter D (=50 mm) of the cone-cylinder slender body. Micro balloon actuators are actuated at different roll angles of a cone-cylinder slender body. Aerodynamic force measurement results indicate the effects of micro balloon actuators vary at different actuation locations on the cone-cylinder slender body. The side forces can be significantly reduced if the actuators are actuated in the weak vortex side (the side corresponding to the asymmetric vortex which is far from the surface) and actuation angles are located at about 50–60° (the actuation angle here is measured from stagnation line of the incidence plane toward weak vortex side direction). Significant changes are noticed from the surface pressure, as well as leeside vortex flow field, measurement. Micro balloon actuators change nose shapes of the slender body which decide adverse-pressure-gradient values and directly influence the origin of the separation lines and characteristics of the separated vortices over the leeside surface.  相似文献   

17.
A unique experimental set-up was fabricated to carry out axial heat flow steady state experiments for the assessment of thermal contact conductance (TCC) at the interface of two materials. Three different materials (copper, brass and stainless steel) were selected for the experiments considering their mechanical and thermal properties. Heat transfer experiments were performed in vacuum environment (0.045 torr) to find out solid spot contact conductance for nominally flat surfaces with different surface roughness (1–5 μm) for each specimen under several load conditions (0.6–15 MPa). A precise estimation of TCC for the interface of sets of similar materials was one of the most important results of this research. The effects of the surface roughness, the material properties and the load conditions (nominal interface pressure) have been studied and documented. Furthermore, the experimental results of solid spot contact conductance were compared with four theoretical models, showing their limitations to make a precise estimation of the TCC in the range of the used parameters.  相似文献   

18.
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials, and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials. A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper, which can achieve 600°C at the interface. Based on this system, the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated, under different interface pressures, interface roughnesses and temperatures, respectively. At the same time, the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated. Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.  相似文献   

19.
20.
In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m2 K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号