首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human osteoblasts, the effect of the widely prescribed cyclooxygenase-2 inhibitor celecoxib on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cell proliferation was explored by using fura-2 and the tetrazolium assay, respectively. Celecoxib at concentrations greater than 1microM caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner ( EC 50= 10 microM). Celecoxib-induced [Ca(2+)](i) rise was reduced by 90% by removal of extracellular Ca(2+), and by 30% by l-type Ca(2+) channel blockers. Celecoxib-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that celecoxib-induced extracellular Ca(2+) influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of celecoxib on [Ca(2+)](i) was greatly inhibited. Conversely, pretreatment with celecoxib to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phoispholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not celecoxib-induced, [Ca(2+)](i) rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, partly inhibited celecoxib-induced [Ca(2+)](i) rise in Ca(2+)-containing medium. Separately, overnight treatment with 1-100microM celecoxib inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human osteoblasts, celecoxib increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Celecoxib may be cytotoxic at higher concentrations.  相似文献   

2.
Pancreatic beta-cells respond to glucose stimulation with increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), manifested as membrane-derived slow oscillations sometimes superimposed with transients of intracellular origin. The effect of external ATP on the oscillatory Ca(2+) signal for pulsatile insulin release was studied by digital imaging of fura-2 loaded beta-cells and small aggregates isolated from islets of ob/ob-mice. Addition of ATP (0.01-100 microM) to media containing 20mM glucose temporarily synchronized the [Ca(2+)](i) rhythmicity in the absence of cell contact by eliciting premature oscillations. External ATP triggered premature [Ca(2+)](i) oscillations also when the sarcoendoplasmic reticulum Ca(2+)-ATPase was inhibited with 50 microM cyclopiazonic acid and phospholipase C inhibited with 10 microM U-73122. The effect of ATP was mimicked by other activators of cytoplasmic phospholipase A(2) (10nM acetylcholine, 0.1-1 micro M of the C-terminal octapeptide of cholecystokinin and 2 microg/ml melittin) and suppressed by an inhibitor of the enzyme (50 microM p-amylcinnamoylanthranilic acid). Premature oscillations generated by pulses of ATP sometimes triggered subsequent oscillations. However, prolonged exposure to high concentrations of the nucleotide (10-100 microM) had a suppressive action on the beta-cell rhythmicity. The early effects of ATP included generation of transients induced by inositol (1,4,5) trisphosphate and superimposed on the premature oscillation or on an ordinary oscillation induced by glucose. The results support the idea that purinergic activation of phospholipase A(2) has a co-ordinating effect on the beta-cell rhythmicity by triggering premature [Ca(2+)](i) oscillations mediated by closure of ATP-sensitive K(+) channels.  相似文献   

3.
Liu PS  Liu GH  Chao WL 《Toxicology》2008,244(1):77-85
Nonylphenol (NP) is the most critical metabolite of alkylphenol polyethoxylate detergents. NP is known as an endocrine disruptor with estrogenic activities and as an inhibitor of endoplasmic reticulum Ca(2+)-ATPase. Estrogen has modulatory roles on ligand-gated ion channels, such as nicotinic acetylcholine receptors (nAChRs). Ca(2+)-ATPase inhibitors can modulate the cytosolic calcium concentration ([Ca(2+)](c)]) and thus can affect the calcium signaling coupled with nAChRs. Therefore, NP is predicted to have complex effects on the Ca(2+) signaling and secretion coupled with nAChRs. This study investigated these effects using bovine adrenal chromaffin cells. The results show that NP suppressed the Ca(2+) signaling coupled with nAChRs and voltage-operated Ca(2+) channels in a dose-dependent manner, with IC(50)s of 1 and 5.9 microM, respectively. Estradiol exhibits similar suppression but much lower inhibitory potencies. NP alone induced a transient rise in [Ca(2+)](c) in the presence or absence of extracellular calcium. Thapsigargin, an endoplasmic reticulum Ca(2+)-ATPase inhibitor, partially suppressed the [Ca(2+)](c) rise induced by NP, but NP totally blocked the [Ca(2+)](c) rise induced by thapsigargin. This illustrates that NP can cause Ca(2+) release from thapsigargin-insensitive pools. Thapsigargin suppressed the Ca(2+) signaling coupled with nAChRs but increased that coupled with voltage-operated Ca(2+) channels. We propose that three routes are responsible for the effects of NP on nAChRs: named receptor channels, voltage-gated Ca(2+) channels, and Ca(2+)-induced Ca(2+) release. Three routes are related to the characteristics of NP as steroid-like compounds and Ca(2+)-ATPase inhibitor.  相似文献   

4.
Carvedilol is a useful cardiovascular drug for treating heart failure, however, the in vitro effect on many cell types is unclear. In human MG63 osteosarcoma cells, the effect of carvedilol on intracellular Ca2+ concentrations ([Ca2+]i) and cytotoxicity was explored by using fura-2 and tetrazolium, respectively. Carvedilol at concentrations greater than 1 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50=15 microM). Carvedilol-induced [Ca2+]i rise was reduced by 60% by removal of extracellular Ca2+. Carvedilol-induced Mn2+-associated quench of intracellular fura-2 fluorescence also suggests that carvedilol induced extracellular Ca2+ influx. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of carvedilol on [Ca2+]i was inhibited by 50%. Conversely, pretreatment with carvedilol to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca2+ mobilizer)-induced, but not carvedilol-induced, [Ca2+]i rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, did not alter carvedilol-induced [Ca2+]i rise. Separately, overnight treatment with 0.1-30 microM carvedilol inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human MG63 osteosarcoma cells, carvedilol increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum and other stores via a phospholipase C-independent manner. Carvedilol may be cytotoxic to osteoblasts.  相似文献   

5.
In human MG63 osteosarcoma cells, the effect of calmidazolium on [Ca(2+)](i) and proliferation was explored using fura-2 and ELISA, respectively. Calmidazolium, at concentrations greater than 0.1 micromol/L, caused a rapid increase in [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 0.5 micromol/L). The calmidazolium-induced [Ca(2+)](i) increase was reduced by 66% by removal of extracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic increase in [Ca(2+)](i), after which the effect of calmidazolium to increase [Ca(2+)](i) was completely inhibited. U73122, an inhibitor of phospholipase C (PLC), abolished histamine (but not calmidazolium)-induced increases in [Ca(2+)](i). Pretreatment with phorbol 12-myristate 13-acetate to activate protein kinase C inhibited the calmidazolium-induced increase in [Ca(2+)](i) in Ca(2+)-containing medium by 47%. Separately, it was found that overnight treatment with 2-10 micromol/L calmidazolium inhibited cell proliferation in a concentration-dependent manner. These results suggest that calmidazolium increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing release of intracellular Ca(2+) from the endoplasmic reticulum in a PLC-independent manner. Calmidazolium may be cytotoxic to osteosarcoma cells.  相似文献   

6.
The purpose of the present study was to examine the mechanisms underlying the putative hypotensive actions of iso-S-petasin, a sesquiterpene extract of Petasites formosanus through both in vivo and in vitro experiments. Intravenous administration of iso-S-petasin elicited dose-dependent (0.1-1.5 mg/kg) hypotensive and bradycardiac responses in anesthetized rats. Isometric tension recording in isolated thoracic aorta revealed that iso-S-petasin (0.01-100 microM) inhibited KCl- or Bay K 8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2'-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester)-induced vasoconstriction independent of endothelium. Iso-S-Petasin also attenuated Ca(2+)-induced vasoconstriction in a concentration-dependent manner in Ca(2+)-depleted/high K(+)-depolarized ring segments, indicating that iso-S-petasin inhibited Ca(2+) influx into vascular smooth muscle cells. This was confirmed by whole-cell patch-clamp recording in cultured vascular smooth muscle cells where iso-S-petasin (10-100 microM) appeared to directly inhibit the L-type voltage-dependent Ca(2+) channel (VDCC) activity. Intracellular Ca(2+) concentration ([Ca(2+)](i)) measurements using the fluorescent probe fura-2/AM (1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid pentaacetoxymethyl ester) showed suppression of the KCl-stimulated increase in [Ca(2+)](i) by iso-S-petasin (10, 100 microM). In conclusion, these results suggest that Ca(2+) antagonism of the L-type VDCC in vascular smooth muscle cells might largely account for the hypotensive action of iso-S-petasin.  相似文献   

7.
We studied the effects of carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in PC12 cells using fura-2 fluorescence imaging. Carmustine (100 microM) caused a delayed increase in [Ca(2+)](i) that developed within approximately 3 h. This effect was enhanced in cells that were pretreated with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BSO, 200 microM, 24 h), and was suppressed in cells that were treated with an antioxidant deferoxamine (50 microM). The carmustine-induced increase in [Ca(2+)](i) was absolutely dependent on the presence of extracellular Ca(2+) and could be inhibited by dihydropyridine blockers of L-type voltage-gated Ca(2+) channels (nimodipine or nitrendipine, 10 microM). The increase in [Ca(2+)](i) was also suppressed in Cl(-)-free solution and in the presence of the Cl(-) channel blockers, indanyloxyacetic acid 94 (IAA-94, 100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 microM). The inhibition was complete when the blockers were applied simultaneously with carmustine and was partial when the blockers were applied after the initial increase in [Ca(2+)](i). We conclude that carmustine induces an influx of extracellular Ca(2+) through L-type Ca(2+) channels and that this effect is mediated by oxidative stress that results from the depletion of GSH following the inhibition by carmustine of glutathione reductase.  相似文献   

8.
In neonatal mouse right ventricles, endothelin-1 (ET-1, 1-300 nM) induced a dose-dependent increase in twitch contractions and the dose-response curve was shifted to the right by BQ-123 (10 microM), an endothelin ET(A) receptor antagonist. The ET-1 (100 nM)-induced positive inotropy was accompanied by an increase in [Ca(2+)](i) transients without any change in the [Ca(2+)](i)-force relationship. Ryanodine (1 microM) partially decreased the [Ca(2+)](i) transients and contractile force, but did not affect the ET-1 (100 nM)-induced positive inotropy. Reduction of [Na(+)](o) elicited an increase in contractile force, and this effect was significantly inhibited by KB-R7943 (30 microM), an inhibitor of the Na(+)-Ca(2+) exchanger. KB-R7943 (30 microM) almost completely suppressed the positive inotropic effect of ET-1. Activation of protein kinase C (PKC) by phorbol 12,13-dibutylate (100 nM) decreased the contractile force, an effect which was suppressed by bisindolylmaleimide I (3 microM). On the other hand, the ET-1-induced positive inotropic effect was unaffected by bisindolylmaleimide I (3 microM). These results suggest that the positive inotropic effect of ET-1 in neonatal mouse right ventricles is caused by the increase in [Ca(2+)](i) transients through activation of the endothelin ET(A) receptor and the increase in Ca(2+) influx via the Na(+)-Ca(2+) exchanger during an action potential. Furthermore, the ET-1-induced positive inotropy is independent of the effects of PKC, which makes it distinct from the ET-1-mediated pathways reported for cardiac tissues in other species.  相似文献   

9.
Fluoxetine, a widely used antidepressant, has additional effects, including the blocking of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells using fura-2-based digital calcium imaging, an assay for [3H]-inositol phosphates (IPs) and whole-cell patch clamping. Treatment with ATP (100 microM) for 2 min induced increases in intracellular free Ca(2+) concentrations ([Ca(2+)](i)). Treatment with fluoxetine (100 nM to 30 microM) for 5 min inhibited the ATP-induced [Ca(2+)](i) increases in a concentration-dependent manner (IC(50) = 1.85 microM). Treatment with fluoxetine (1.85 microM) for 5 min significantly inhibited the ATP-induced responses following the removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores. Whereas treatment for 10 min with nimodipine (1 microM) significantly inhibited the ATP-induced [Ca(2+)](i) increase, treatment with fluoxetine further inhibited the ATP-induced response. Treatment with fluoxetine significantly inhibited [Ca(2+)](i) increases induced by 50 mM K(+). In addition, treatment with fluoxetine markedly inhibited ATP-induced inward currents in a concentration-dependent manner. However, treatment with fluoxetine did not inhibit ATP-induced [3H]-IPs formation. Therefore, we conclude that fluoxetine inhibits ATP-induced [Ca(2+)](i) increases in PC12 cells by inhibiting both the influx of extracellular Ca(2+) and the release of Ca(2+) from intracellular stores without affecting IPs formation.  相似文献   

10.
The effect of the estrogen diethylstilbestrol (DES) on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteoblasts was explored by using fura-2 as a Ca(2+) indicator. DES at concentrations between 5--20 microM induced an immediate increase in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) of 10 microM. Removing extracellular Ca(2+) reduced the Ca(2+) signal by 70%. Pretreatment with 50 microM La(3+) or 10 microM of nifedipine, verapamil and diltiazem did not change 20 microM DES-induced [Ca(2+)](i) increases. Addition of 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 20 microM DES in Ca(2+)-free medium. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store partly inhibited 20 microM DES-induced Ca(2+) release, but addition of carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and thapsigargin together abolished DES-induced Ca(2+) release. Conversely, pretreatment with 20 microM DES abrogated CCCP- and thapsigargin-induced Ca(2+) release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 20 microM DES-induced Ca2+ release. Another estrogen 17beta-estradiol also increased [Ca(2+)](i) in a concentration-dependent manner with an EC50 of 7 microM. Together, the data indicate that in human osteoblasts, DES increased [Ca(2+)](i) via causing Ca(2+) release from both mitochondria and the endoplasmic reticulum in a phospholipase C-independent manner, and by causing Ca(2+) influx.  相似文献   

11.
Gabapentin and pregabalin (S-(+)-3-isobutylgaba) produced concentration-dependent inhibitions of the K(+)-induced [Ca(2+)](i) increase in fura-2-loaded human neocortical synaptosomes (IC(50)=17 microM for both compounds; respective maximal inhibitions of 37 and 35%). The weaker enantiomer of pregabalin, R-(-)-3-isobutylgaba, was inactive. These findings were consistent with the potency of these drugs to inhibit [(3)H]-gabapentin binding to human neocortical membranes. The inhibitory effect of gabapentin on the K(+)-induced [Ca(2+)](i) increase was prevented by the P/Q-type voltage-gated Ca(2+) channel blocker omega-agatoxin IVA. The alpha 2 delta-1, alpha 2 delta-2, and alpha 2 delta-3 subunits of voltage-gated Ca(2+) channels, presumed sites of gabapentin and pregabalin action, were detected with immunoblots of human neocortical synaptosomes. The K(+)-evoked release of [(3)H]-noradrenaline from human neocortical slices was inhibited by gabapentin (maximal inhibition of 31%); this effect was prevented by the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydro[f]quinoxaline-7-sulphonamide). Gabapentin and pregabalin may bind to the Ca(2+) channel alpha 2 delta subunit to selectively attenuate depolarization-induced Ca(2+) influx of presynaptic P/Q-type Ca(2+) channels; this results in decreased glutamate/aspartate release from excitatory amino acid nerve terminals leading to a reduced activation of AMPA heteroreceptors on noradrenergic nerve terminals.  相似文献   

12.
Effect of sertraline, an antidepressant, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in human cancer cells is unclear. This study examined if sertraline altered basal [Ca(2+)](i) levels in suspended OC2 human oral cancer by using fura-2 as a Ca(2+)-sensitive fluorescent probe. At concentrations of 10-100 μM, sertraline induced a [Ca(2+)](i) rise in a concentration-dependent fashion. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+) indicating that Ca(2+) entry and release both contributed to the [Ca(2+)](i) rise. Sertraline induced Mn(2+) influx, leading to quench of fura-2 fluorescence suggesting Ca(2+) influx. This Ca(2+) influx was inhibited by suppression of phospholipase A2, inhibition of store-operated Ca(2+) channels or by modulation of protein kinase C activity. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) nearly abolished sertraline-induced Ca(2+) release. Conversely, pretreatment with sertraline greatly reduced the inhibitor-induced [Ca(2+)](i) rise, suggesting that sertraline released Ca(2+) from the endoplasmic reticulum. Inhibition of phospholipase C did not change sertraline-induced [Ca(2+)](i) rise. Together, in human oral cancer cells, sertraline induced [Ca(2+)](i) rises by causing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via store-operated Ca(2+) channels.  相似文献   

13.
Here, we investigated changes in the free cytosolic Ca(2+) concentration ([Ca(2+)](i)), induced by the pharmacological activation of metabotropic glutamate receptors (mGluRs), in nociceptive neurons of the superficial spinal dorsal horn. Microfluorometric Ca(2+) measurements with fura-2 in a lumbar spinal cord slice preparation from young rats were used. Bath application of the specific group I mGluR agonist (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) resulted in a distinct increase of [Ca(2+)](i) in most of the neurons in superficial dorsal horn. In contrast, activation of groups II or III mGluRs by DCG-IV or l-AP4, respectively, failed to evoke any significant change in [Ca(2+)](i). The effect of (S)-3,5-DHPG was mediated by both group I subtypes mGluR1 and mGluR5, since combined pre-treatment with the subtype antagonists (S)-4-CPG and MPEP was necessary to abolish the [Ca(2+)](i) increase. Depleting intracellular Ca(2+) stores with CPA or inhibiting IP(3)-receptors with 2-APB, respectively, reduced the (S)-3,5-DHPG-evoked [Ca(2+)](i) increase significantly. Inhibition of voltage-dependent L-type Ca(2+) channels (VDCCs) by verapamil or nicardipine reduced the (S)-3,5-DHPG-induced [Ca(2+)](i) rise likewise. Thus, in rat spinal cord, (S)-3,5-DHPG enhances Ca(2+) signalling in superficial dorsal horn neurons, mediated by the release of Ca(2+) from IP(3)-sensitive intracellular stores and by an influx through L-type VDCCs. This may be relevant to the processing of nociceptive information in the spinal cord.  相似文献   

14.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored by using fura-2 as a Ca(2+) indicator. Fendiline at concentrations between 1 and 200 microM increased [Ca(2+)](i) in a concentration-dependent manner and the signal saturated at 100 microM. The Ca(2+) signal was inhibited by 65+/-5% by Ca(2+) removal and by 38+/-5% by 10 microM nifedipine, but was unchanged by 10 microM La(3+) or verapamil. In Ca(2+)-free medium, pre-treatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store inhibited fendiline-induced intracellular Ca(2+) release. The Ca(2+) release induced by 50 microM fendiline appeared to be independent of IP(3) because the [Ca(2+)](i) increase was unaltered by inhibiting phospholipase C with 2 microM U73122. Collectively, the results suggest that in MG63 cells fendiline caused an increase in [Ca(2+)](i) by inducing Ca(2+) influx and Ca(2+) release in an IP(3)-independent manner.  相似文献   

15.
Capsazepine has been widely used as a selective antagonist of vanilloid type 1 receptors; however, its other in vitro effect on most cell types is unknown. In human PC3 prostate cancer cells, the effect of capsazepine on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cytotoxicity was investigated by using fura-2 and tetrazolium, respectively. Capsazepine caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 75 microM. Capsazepine-induced [Ca(2+)](i) rise was reduced by 60% by removal of extracellular Ca(2+), suggesting that the capsazepine-induced [Ca(2+)](i) rise was contributed by extracellular Ca(2+) influx and intracellular Ca(2+). Consistently, the capsazepine (200 microM)-induced [Ca(2+)](i) rise was decreased by La(3+) by half. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the effect of capsazepine on [Ca(2+)](i) was inhibited by 80%. Conversely, pretreatment with capsazepine partly reduced thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not capsazepine-induced, [Ca(2+)](i) rise. These findings suggest that in human PC3 prostate cancer cells, capsazepine increases [Ca(2+)](i) by evoking Ca(2+) influx and releasing Ca(2+) from the endoplasmic reticulum via a phospholiase C-independent manner. Overnight incubation with capsazepine (200 microM) killed 37% of cells, which could not be prevented by chelating intracellular Ca(2+) with BAPTA.  相似文献   

16.
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations > or = 5 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 microM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 microM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 microM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.  相似文献   

17.
The effect of the antidepressant desipramine on intracellular Ca(2+) movement and viability in prostate cancer cells has not been explored previously. The present study examined whether desipramine could alter Ca(2+) handling and viability in human prostate PC3 cancer cells. Cytosolic free Ca(2+) levels ([Ca(2+)](i)) in populations of cells were measured using fura-2 as a probe. Desipramine at concentrations above 10 microM increased [Ca(2+)](i) in a concentration-dependent manner. The responses saturated at 300 microM desipramine. The Ca(2+) signal was reduced by half by removing extracellular Ca(2+), but was unaffected by nifedipine, nicardipine, nimodipine, diltiazem or verapamil. In Ca(2+)-free medium, after treatment with 300 microM desipramine, 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) failed to release Ca(2+) from endoplasmic reticulum. Conversely, desipramine failed to release more Ca(2+) after thapsigargin treatment. Inhibition of phospholipase C with U73122 did not affect desipramine-induced Ca(2+) release. Overnight incubation with 10-800 microM desipramine decreased viability in a concentration-dependent manner. Chelation of cytosolic Ca(2+) with BAPTA did not reverse the decreased cell viability. Collectively, the data suggest that in PC3 cells, desipramine induced a [Ca(2+)](i) increase by causing Ca(2+) release from endoplasmic reticulum in a phospholipase C-independent fashion and by inducing Ca(2+) influx. Desipramine decreased cell viability in a concentration-dependent, Ca(2+)-independent manner.  相似文献   

18.
The role of Na(+) and Na(+) exchangers in intracellular Ca(2+) elevation and leukotriene B(4) (LTBs) formation was investigated in granulocyte macrophage colony-stimulating factor (GM-CSF)-primed, fMLP-stimulated human neutrophils. Isotonic substitution of extracellular Na(+) with N-methyl-D-glucamine(+) (NMDG(+)) resulted in over 85% inhibition of the LTBs generation observed (from 14.1+/-0.9pmol/10(6) neutrophils to 1.7+/-1.0pmol/10(6) neutrophils at 0.3 microM fMLP). Isotonic substitution of Na(+) with NMDG(+) also induced a significant inhibition of fMLP-induced rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) (from 2.17- to 0.78-fold increase over basal levels). Pretreatment with an inhibitor of the Na(+)/Ca(2+) exchanger (benzamil) did not inhibit either [Ca(2+)](i) rise or LTBs production, indicating that the observed effects of extracellular Na(+)-deprivation were unrelated to the Na(+)/Ca(2+) exchanger in receptor-mediated Ca(2+) influx, as previously hypothesized. LTBs production by thapsigargin-activated neutrophils was not affected by Na(+) depletion, but was totally abolished in the presence of EGTA, suggesting that store depletion-driven extracellular Ca(2+) influx is required for leukotriene synthesis and that this process is independent of Na(+)-deprivation. Exposure to Na(+)-free medium for the time of GM-CSF priming led to a significant decrease of intracellular pH values, suggesting a role of the Na(+)/H(+) exchanger in intracellular Na(+) depletion. Reducing the time of Na(+)-deprivation totally reversed the observed effect on LTBs production, resulting in enhanced, rather than inhibited, formation of LTBs. These results indicate that LTBs generation and [Ca(2+)](i) rise in human neutrophils primed by GM-CSF and stimulated with fMLP is dependent on intracellular Na(+) concentration, and, at variance with previously published results, unrelated to the Ca(2+) influx through the Na(+)/Ca(2+) exchanger.  相似文献   

19.
In human osteosarcoma MG63 cells, the effect of Y-24180, a presumed specific platelet-activating factor (PAF) receptor antagonist, on intracellular Ca(2+) concentration ([Ca(2+)](i)) and proliferation was measured by using fura-2 and tetrazolium as fluorescent dyes, respectively. Y-24180 (1-5 microM) caused a rapid and sustained [Ca(2+)](i) rise in a concentration-dependent manner. The [Ca(2+)](i) rise was inhibited by 35% by dihydropyridines or removal of extracellular Ca(2+), but was not altered by verapamil and diltiazem. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which 5 microM Y-24180 failed to increase [Ca(2+)](i); conversely, depletion of Ca(2+) stores with 5 microM Y-24180 abolished thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phoispholipase C, inhibited histamine-induced, but not 5 microM Y-24180-induced [Ca(2+)](i) rise. Overnight treatment with 0.1-5 microM Y-24180 inhibited cell proliferation in a concentration-dependent manner. Together, these findings suggest that Y-24180 acts as a potent and cytotoxic Ca(2+) mobilizer in human osteosarcoma cells, by inducing both extracellular Ca(2+) influx and intracellular Ca(2+) release. Alterations in cytosolic Ca(2+) regulation may lead to interferences of various cellular functions; thus, attention should be exercised in using Y-24180 as a selective PAF receptor antagonist.  相似文献   

20.
Dimercaptosuccinic acid (DMSA) was shown to lower blood pressure in rat models of arterial hypertension. Thus, there is evidence that-besides its chelating properties-DMSA has a direct vascular effect, e.g. through scavenging of reactive oxygen species (ROS). We speculated that, in addition, intracellular calcium mobilization may be involved in this action. Therefore, the present study examined the effects of DMSA on Ca(2+) mobilization in cultured vascular smooth muscle cells (VSMCs) from rat aorta. Intracellular free Ca(2+) concentration ([Ca(2+)](i)) was measured with fura-2 AM. In a first series of experiments DMSA, 10(-11) to 10(-6)M, induced an immediate dose-dependent up to 4-fold rise of [Ca(2+)](i) (P<0.001) which was almost completely blunted by the calcium channel blocker verapamil or the intracellular calcium release blocker TMB-8. In a second series of experiments, when VSMCs were exposed acutely to DMSA (10(-11) to 10(-6)M), the angiotensin (ANG) II (10(-8)M)-induced rise in [Ca(2+)](i) to 295+/-40nM was attenuated at the average by 49% independent of the dose of DMSA. Preincubation of VSMCs with DMSA (10(-6)M) for 60min reduced basal [Ca(2+)](i) by 77% (P<0.001) and dose-dependently attenuated the ANG II (10(-8)M)-induced rise in [Ca(2+)](i) between 28 and 69% at concentrations between 10(-9) and 10(-5)M DMSA, respectively (P<0.05 and <0.01). In the presence of TMB-8, which attenuated the ANG II (10(-8)M)-induced rise in [Ca(2+)](i) by 66%, DMSA (10(-6)M) had no additional suppressive effect on [Ca(2+)](i). The results suggest that DMSA acutely raises [Ca(2+)](i) by stimulating transmembrane calcium influx via L-type calcium channels and by calcium release from intracellular stores followed by a decrease in [Ca(2+)](i) probably due to cellular calcium depletion. Thus, in addition to its action as scavenger of ROS, which in part mediate the vasoconstrictor response, e.g. to ANG II, DMSA may exert its hypotensive effect through decreasing total cell calcium, thereby attenuating the vasoconstrictor-induced rise in [Ca(2+)](i) in VSMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号