首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Treatment of raw domestic sewage in an UASB reactor   总被引:4,自引:0,他引:4  
The treatment of raw domestic sewage at ambient temperatures in an upflow anaerobic sludge blanket (UASB) reactor with a volume of 120 l. and a height of 1.92 m was studied. The sewage had an average BOD5 of 357 mg l−1 and COD of 627 mg l−1. Approximately 75% of the organic materials were in the suspended fraction. The sewage temperature ranged from 18 to 28°C during the experimental period. The reactor operated continuously for 9 months and assessed self-inoculation and raw domestic sewage purification. The unit was started without inoculum and ran during the entire experimental period with a hydraulic retention time of 4 h. During the experiment, a sludge bed build-up was observed. At the end of the experimental period, the predominance of spherical granular particles up to 6–8 mm in diameter was evident.

After a 4-month operation, it was observed that the inoculation/acclimatization steps had been concluded. Removal efficiencies of BOD5 = 78%, COD = 74% and TSS = 72% were obtained. A typical gas production factor of 80 l kg−1 COD added was observed and the CH4 content of the biogas was 69%.  相似文献   


2.
An anaerobic sludge blanket process, termed the anaerobic baffled reactor (ABR), has been developed and shows promise for industrial wastewater treatment. It combines the advantages of high stability and reliability with a high void volume. The risk of clogging and sludge bed expansion with resulting high microbial losses is reduced and there is no need for special gas collection or biological solids separation systems. Organic loadings as high as 36 g COD l?1day?1 have been achieved with COD removal rates of more than 24 g COD l?1 day?1 and methane production rates exceeding 6 volumes per day per unit volume of reactor. The hypothesis, that the ABR may be adequately modeled as a fixed-film reactor, has been supported. Therefore, a unified approach, based on fundamentals of bacterial kinetics and mass transport, appears useful for modeling this and similar systems. Pilot plant studies are necessary to determine the scaling factors of the system as well as the overall efficiency and costs.  相似文献   

3.
This study presents and demonstrates results obtained from an half full-scale upflow fixed bed reactor (UFBR) treating a primary settled domestic sewage. This study used expanded clay with an effective size of 2.7 mm containing hematite and magnetite as a granular medium.The content of TSS in the effluent treated was always between 10 and 20 mg l−1 for bed depths ranging from 2 to 3 m and filtration rates of 3–6 m3m−2h−1.The profiles taken all along the reactor show that the activity of the biomass is constant over the whole height of the reactor. Moreover, an air/water volume ratio of 2:1 is amply sufficient to satisfy the oxygen demand of the biomass. The average removal efficiency based on the soluble COD remains virtually unchanged as a function of the filtration rate at about 70% of the influent. For a final BOD5 of 30 mg l−1, loadings of 4.5–8 kg BOD5m−3 can be applied. This corresponds to filtration rates of 3–6 m3m−2h−1. The removal efficiencies for BOD5 are then about 80%.After optimization of the backwashing conditions, the consumption of backwash water is about 5% of the volume of filtered water.Sludge measurements carried out during our experiments indicate an excess sludge production of 1 kg kg−1 BOD5 eliminated. The nature of these sludges is very similar to the biological sludges produced in the high rate activated sludge process.This study has made it possible to establish design parameters of an UFBR and to develop technology for applications. These results are applied to two wastewater treatment plants which began to operate in 1984: these plants serve population equivalents of 40,000 and 11,000.  相似文献   

4.
Anaerobic treatment of real textile wastewater with a fluidized bed reactor   总被引:13,自引:0,他引:13  
Sen S  Demirer GN 《Water research》2003,37(8):1868-1878
Anaerobic treatability of a real cotton textile wastewater was investigated in a fluidized bed reactor (FBR) with pumice as the support material. The immobilized biomass or attached volatile solids level on the support material was 0.073 g VSS/g support material at the end of the 128-d start-up period. During the operation period, real cotton textile wastewater was fed to the anaerobic FBR both unsupplemented (in Stages 1 and 2) and supplemented (with synthetic municipal wastewater in Stage 3 and glucose in Stages 4-6). The effect of operational conditions such as organic loading rate (OLR), hydraulic retention time (HRT), influent glucose concentration as the co-substrate, etc. was investigated to achieve the maximum color removal efficiency in the reactor. Results indicated that anaerobic treatment of textile wastewater studied was possible with the supplementation of an external carbon source in the form of glucose (about 2g/l). The corresponding maximum COD, BOD(5) and color removals were found to be around 82%, 94% and 59%, respectively, for HRT of around 24h and OLR of 3 kg COD/m(3)/d. Further increase in external carbon source added to real textile wastewater did not improve the color removal efficiency of the anaerobic FBR reactor.  相似文献   

5.
杨高峰 《山西建筑》2010,36(30):177-178
阐述了膜生物反应器(MBR)的分类及原理,总结出膜生物反应器较传统的活性污泥系统所具有的特点,重点介绍了膜生物反应器在生活污水处理领域的应用,从而达到较高的去除效果。  相似文献   

6.
李利平  王万东  贺闯 《山西建筑》2007,33(26):211-212
对传统化粪池与地埋式污水处理池进行了分析对比,阐述了地埋式污水处理池的设计优点,指出经过各级部门的有力推广,地埋式污水处理池会创造化粪池的革命新时代。  相似文献   

7.
An extended summary is presented of a Dr.Sc. Thesis in which the results of a study on anaerobic treatment of wastewater containing fatty acids have been reported. This study, concerning the technological features of this process in upflow reactors, was aimed at the following subjects :
• - the dynamics of the fluid flow in the reactor;
• - the dynamic behaviour of the sludge particles in the reactor;
• - the kinetics of the conversion of the fatty acids and of the formation of the products (mainly biogas and anaerobic sludge); and
• - the separation of the gas and the sludge from the treated water.
From the results obtained in experiments on lab-scale and (semi) technical scale, a quantitative model for the operation of the reactor has been derived. This model can be used for scaling-up purposes and for optimisation of the process performance.  相似文献   

8.
Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).  相似文献   

9.
I. Vyrides 《Water research》2009,43(4):933-8934
This study investigated the performance of a submerged anaerobic membrane reactor (SAMBR) treating saline sewage under fluctuating concentrations of salinity (0-35 g NaCl/L), at 8 and 20 h HRT, with fluxes ranging from 5-8 litres per square metre per hour (LMH). The SAMBRs attained a 99% removal of Dissolved Organic Carbon (DOC) with 35 g NaCl/L, while removal inside the reactor was significantly lower (40-60% DOC). Even with a sudden drop in salinity overall removal recovered quickly, while the recovery inside the reactor took place at a slower rate. This highlights the positive effect of the membrane in preventing the presence of high molecular weight organics in the effluent while also retaining biomass inside the reactor so that they can rapidly acclimatize to salinity. The reduction of continuous biogas sparging to intervals of 10 min ON and 5 min OFF resulted in a slight increase in transmembrane pressure (TMP) by 0.025 bar, but also resulted in an increase in effluent DOC removal and inside the SAMBR by 10% and 20%, respectively. The addition of powdered activated carbon (PAC) resulted in a decrease in the TMP by 0.070 bar, and an increase in DOC removal in the reactor and effluent by 30% and 5%, respectively. The PAC dramatically decreased the high molecular weight organics in the reactor over a period of 72 h. SEM pictures of the membrane and biomass before and after addition of PAC revealed a remarkable reduction of flocks on the membrane surface, and a reduction inside the reactor of soluble microbial products (SMPs). Finally, Energy Dispersive X-ray (EDX) analysis of the membranes pores and biofilm highlighted the absence of organic matter in the inner pores of the membrane.  相似文献   

10.
Using a cross-flow membrane bioreactor, high anaerobic conversion rates of three different types of wastewater with varying organic content were achieved. Loading rates obtained were as follows: 20 g CODL(-1) x d(-1) for artificial wastewater, approximately 8 g CODL(-1) x d(-1) from vegetable processing industry (sauerkraut brine) and 6-8 g CODL(-1) x d(-1) for wastewater from an animal slaughterhouse. At stable conditions, COD-removal rates in all three wastewaters were higher than 90%. Methane yields from the treatment of artificial wastewater, sauerkraut brine, and animal slaughterhouse wastewater were in the range of 0.17-0.30, 0.20-0.34, and 0.12-0.32 L(n) x g(-1) COD(-1) fed, respectively. The complete retention of biomass and suspended solids is a unique feature of this treatment process, which combines a high loading capacity and at the same time, high COD removal rates even for complex wastewater containing high concentrations of particulate matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号