首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Methyl-capped poly(ethylene oxide) moieties were chemically bonded to silica gel using an amine-reactive modification reagent and evaluated as the stationary phase for ion chromatography. In this work, primary amino groups of an aminopropylsilica packing material were reacted with methyl-PEO12-NHS ester (succinimidyl-{[N-methyl]-dodecaethyleneglycol} ester) in phosphate buffer (pH 7.0) at room temperature. The prepared poly(ethylene oxide)-bonded stationary was evaluated for the separation of inorganic anions, and the retention behavior of inorganic anions on the prepared stationary phase was examined. The elution order of the investigated anions was the same as that observed in common ion chromatography. Both cations and anions of the eluent affected the retention of the analyte anions. Ion exchange was involved for the retention of analyte anions, although the present stationary phase does not possess any discrete ion-exchange sites. The stationary phase was applied to the separation of trace anions contained in tap water and a rock salt.  相似文献   

2.
Inorganic anions were separated on hydrophobic stationary phases such as triacontyl-functionalized silica. Eluent conditions were examined in detail, and iodate, nitrate, iodide, and thiocyanate could be separated by using aqueous solutions. The effect of the eluent concentration on the retention of analyte anions was examined for a wide range of sodium sulfate concentrations of up to 1 M. The retention factor of hydrophobic anions decreased with increasing sodium sulfate concentration in the lower concentration region, while it increased with increasing sodium sulfate concentration in the higher concentration region. The addition of a small amount of an organic substance such as acetonitrile and tetraethylene glycol increased the retention of iodide and thiocyanate, while the addition of alcohols decreased their retention. Operating at lower temperature also increased the retention of analyte anions. It was expected that inorganic anions were retained on the stationary phase via hydrophobic interactions. The retention mechanism was discussed, considering the results obtained.  相似文献   

3.
A new stationary phase Al2O3/SiO2-10 was prepared and characterized by XPS, XRD, SEM and surface analysis. The anion exchanger properties of this new stationary phase were investigated by the separation of inorganic anions in ion chromatography (IC). pH of the mobile phase, concentration and strength of the Lewis base of the elute, and the organic modifier of the mobile phase strongly affect the separation of inorganic anions, and anion exchange selectivities of the analyte on the new support are significantly different from quaternary ammonium styrene based anion exchangers. The result of separation of inorganic anions shows that the new stationary phase provides excellent column efficiency, well-defined chromatographic peaks and favorable retention times.  相似文献   

4.
A vitamin U-bonded stationary phase was prepared and the retention behavior of inorganic anions was examined using ion chromatography. Inorganic anions were retained on the vitamin U-bonded stationary phase under acidic as well as neutral eluent conditions in the ion-exchange mode. The elution order of the examined anions under neutral eluent conditions was nearly the same as that observed in common ion exchange mode, while the elution order observed under acidic eluent conditions was completely different from that observed in common ion exchange mode. The retention of the analyte anions under the neutral eluent conditions was due to the sulfonium groups of the vitamin U, while protonated primary amino groups caused retention of the analyte anions with different selectivity under acidic conditions. The retention factor of the analyte anions increased with decreasing eluent concentration under both eluent conditions. The present system was applied to the determination of bromide and nitrate contained in seawater.  相似文献   

5.
Two mixtures of four 1-alkyl-3-methylimidazolium ionic liquids (ILs) salts associated to the anions tetrafluoroborate or hexafluorophosphate were analyzed by reversed-phase liquid chromatography with three different stationary phases: Kromasil C(8), Zorbax Extend C(18) and Zorbax Sb-Aq. The effect on retention of various inorganic salts (NaCl, NaH(2)PO(4,) NaBF(4), NaClO(4) and NaPF(6)) added to acetonitrile/water mobile phases was studied. The three columns gave similar separation profiles. In all cases, the retention of ILs increased with the increasing affinity of the inorganic anions for the apolar stationary phases; a phenomenon called chaotropicity. The chaotropic anion order is Cl(-) approximately H(2)PO(4)(-) < BF(4)(-) approximately ClO(4)(-) < PF(6)(-). It is established that the presence of chaotropic anions in the mobile phase do not permit to differentiate between ILs associated to different anions. However, chloride or dihydrogenphosphate added salts do not fully screen the retention differences between ILs associated with different anions. Distorted and even split peaks may appear in the chromatogram depending on the nature and concentration of the injected ILs. In the RPLC analysis of imidazolium-based IL, it is recommended to add to the mobile phase significant amounts of a salt containing a chaotropic anion. This salt addition will improve the IL peak shapes and give reproducible retention factors. LODs in the low microgram range ( approximately 5 nmol) were obtained with the Kromasil C(8) column with a 50/50 acetonitrile-water mobile phase containing 0.01 M NaPF(6) added salt and 230 nm UV detection.  相似文献   

6.
以自制的6.0μm单分散大孔交联聚氯甲基苯乙烯-二乙烯基苯(Poly(4-vinylbenzylchloride-co-divi-nylbenzene),PCMS/DVB)微球为基质和引发剂,CuCl和自行合成的三[(2-二甲基氨基)乙基]胺(Tris[2-(dimeth-ylamino)ethyl]amine,Me6TREN)组成混合催化体系,使4-乙烯基吡啶(4-Vinyl pyridine,4-VP)在甲苯中进行原子转移自由基聚合,制得4-乙烯基吡啶聚合物,单体4-乙烯基吡啶的接枝率为8.55%。将该聚合物与正溴丁烷反应制得新型亲水色谱固定相。在亲水作用色谱模式下,流速1 mL/min,乙腈-水为流动相可分离5种芳胺化合物和4种酚类化合物。在离子交换色谱模式下,6 mmol/L Na2CO3-5.5 mmol/L NaHCO3为淋洗液可分别分离5种无机阴离子和4种短链有机酸。结果表明,此固定相对极性化合物和无机阴离子具有良好的分离性能,是一种性能优异的亲水作用色谱固定相。  相似文献   

7.
Liu Y  Du Q  Yang B  Zhang F  Chu C  Liang X 《The Analyst》2012,137(7):1624-1628
A silica based amino stationary phase was prepared by immobilization of propargylamine on azide-silica via click chemistry. This readily prepared click amino stationary phase demonstrated good selectivity in separation of common inorganic anions under ion chromatography (IC) mode, and the triazole ring in combination with free amino group was observed to play a major role for separation of the anions examined. On the other hand, the stationary phase also showed good hydrophilic interaction liquid chromatography (HILIC) properties in the separation of polar compounds including nucleosides, organic acids and bases. The retention mechanism was found to match well the typical HILIC retention.  相似文献   

8.
Hong Yu  Ruishu Li 《Chromatographia》2008,68(7-8):611-616
An investigation has been conducted into the effect of column temperature on the retention of inorganic anions and organic acids in non-suppressed ion chromatography on an anion-exchange column. Potassium biphthalate and p-hydroxybenzoic acid–tris–boric acid were used as mobile phases. The column temperature was from 25 to 50 °C. Endothermic and exothermic retention of inorganic anions were both observed when potassium biphthalate was used as mobile phase. When p-hydroxybenzoic acid–tris–boric acid was used as mobile phase, however, endothermic behavior only was observed. Moreover, for the two mobile phases, variation of the retention time of the system peaks with changing temperature was reversed. For retention of the organic acids, only endothermic behavior was observed with the two mobile phases. Variation of retention time was greater when p-hydroxybenzoic acid–tris–boric acid was used as mobile phase than when potassium biphthalate was used. These results indicated the exchange reaction in anion-exchange chromatography could be either endothermic or exothermic, depending on the solute and mobile phase ions involved. Different relative changes of retention time were observed for individual inorganic anions and organic acids with increasing column temperature. In general, variation of retention time with increasing temperature was greater for strongly retained inorganic anions and organic acids than for weakly retained species. Van’t Hoff plots for inorganic anions, organic acids, and system peaks were linear. Selectivity variation of the retention of inorganic anions and organic acids was achieved by changing the temperature. In achieving optimum separation of inorganic anions and organic acids, temperature was a valuable tool. To reduce the retention times of the ions and avoid interference from system peaks in non-suppressed anion-exchange ion chromatography with the two mobile phases, a low column temperature, for example, 35 °C, was best.  相似文献   

9.
高效液相色谱法;氧化锆及铈-锆复合氧化物的阴离子交换和配体交换色谱性能  相似文献   

10.
A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.  相似文献   

11.
The retention behavior of inorganic anions on a triazole-based stationary phase was first examined in ion chromatography. It was initially designed for hydrophilic interaction liquid chromatography and was simply prepared by introducing the triazole groups onto the surface of silica gel via click chemistry. Effective separation of common inorganic anions, including iodate, chloride, bromide, nitrate and iodide, was achieved with Na(2)SO(4) eluent. The logarithm of the retention factor of analytes was observed to be linear with the logarithm of the eluent concentration, and the slopes of the plots were almost the same as those of the ideal theoretical value. The eluent pH value in the range of 3.4-7.0 had little effect on the separation. The utility of the column was demonstrated for the determination of UV-absorbing anions in saliva and tap water.  相似文献   

12.
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites.  相似文献   

13.
A new imidazolium anion-exchange phase immobilized on silica is synthesized. HPLC separations of common inorganic anions (IO3-, Cl-, NO2-, Br-, NO3-, I-, SCN-) have been performed using a HPLC column (200 mm x 4.6 mm I.D.) packed with this stationary phase, with a phosphate buffer solution as the mobile phase and UV detection at 200 nm. The effects of pH and concentration of eluent on the separation of anions have been studied. Chromatographic parameters are calculated and the results show that the new stationary phase is of significant potential for the analysis of these anions. Successful separations of some ordinary organic anions have also been achieved with the said stationary phase. Meaningfully, organic and inorganic anions can be determined simultaneously and satisfactorily with several neutral compounds using the column. The separation of some organic compounds including hydroxybenzenes, bases and amines by this stationary phase with only water as the eluent has been investigated.  相似文献   

14.
Anionic species with ion pair forming ability are commonly used to enhance the retention and efficiency of basic analytes in RPLC separations. However, little is known about the interactions between organic mobile phase modifiers and such ion pairing anions. In this work, we measured the magnitude of the retention increase of basic drugs and peptides upon addition of strong inorganic ion pairing anions (e.g. perchlorate) as a function of the volume fraction of modifier in acidic water-acetonitrile mobile phases on two different stationary phases. We found that the increase in retention upon addition of various salts depended strongly on the eluent strength. In general, larger retention increases upon addition of the anion were observed at higher organic fractions. Regression of retention against the volume fraction of organic modifier indicated that the ion pair forming anions substantially decreased S values while only slightly changing ln k'w values. The decrease in S is the major cause of the retention increase of basic drugs and peptides when such anions are added to the mobile phase.  相似文献   

15.
The complex [TpPh,MeNi(Cl)PzPh,MeH] ( I ) [TpPh,Me=hydrotris(3‐phenyl‐5‐methyl‐pyrazol‐1‐yl)borate; PzPh,MeH=3‐phenyl‐5‐methyl‐pyrazole] has been synthesized and explored as ionophore for the preparation of a poly(vinyl chloride) (PVC) membrane sensor for benzoate anions. The formation constants for the interaction of complex I with different organic/inorganic anions in solution have also been studied by sandwich membrane method. PVC based membranes of I using tridodecylmethylammonium chloride (TDDMACl) as cation discriminator and o‐nitrophenyloctyl ether (o‐NPOE), dibutylphthalate (DBP), benzylacetate (BA) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as benzoate selective sensors. The best performance was shown by the membrane with composition (w/w) of I (5): PVC (150): NPOE (345): TDDMACl (0.3). The proposed sensor exhibits significantly enhanced selectivity toward benzoate ions over the concentration range 2.2×10?6–1.0×10?1 M with a lower detection limit of 1.4×10?6 M and a Nernstian slope of 59.2 mVdecade?1 of activity within a pH range of 4.5–8.5. The sensor has a response time of 12 s and can be used for at least 8 weeks without any considerable divergence in their potential response. The membrane sensor of complex I have been checked for reversible and accurate sensing of benzoate levels present in liquid food products.  相似文献   

16.
A new stationary phase N-methylimidazolium functionalized ZrO(2)/SiO(2)-4 (Zr/SilprMim) has been prepared. The chromatographic property of this stationary phase is investigated by ion chromatography (IC) with inorganic and organic anions, and normal phase HPLC with basic compounds and hydroxybenzenes. The effects of pH and the strength of Lewis base of eluent on separation of anions are studied. This new stationary phase is also compared with a N-methylimidazolium functionalized SiO(2) stationary phase (SilprMim). The results show that this new stationary phase can be used in analysis of inorganic anions with great prospects. At the same time, successful separations of some organic anions can be obtained by using phosphate buffer solution as mobile phase. This new stationary phase also has a distinct advantage in the separation of basic compounds in normal phase. But due to the presence of Lewis acid sites on the surface of ZrO(2)/SiO(2)-4, Lewis bases such as hydroxybenzenes adsorb very strongly on this new stationary phase, and Lewis acid sites can be masked or modified by the eluent that contain Lewis base groups.  相似文献   

17.
Separation of twelve enkephalins was investigated on a quaternary ammonium-embedded stationary phase (Stability BS-C23). Variation of buffer pH of the mobile phase highlighted the complex relationship between repulsive/attractive electrostatic interactions and the reversed-phase partitioning mechanism. The effect of three different anions employed as additives (phosphate, chloride and perchlorate) was examined at various concentrations and two pH values (acidic and neutral). At pH 2.5, an increase in the anion eluent concentration resulted in a higher retention factors of positively charged enkephalins. This effect was more pronounced when perchlorate ions were added to the mobile phase rather than phosphate and chloride ions, due to chaotropic and ion-pairing effects. In contrast, at pH 7.5, retention factors of negatively charged enkephalins decreased when these salts were added, due to an anion-exchange mechanism. Perchlorate caused a sharper decrease than chloride and phosphate anions did. The results presented here provide insight into the possible adjustment of retention and separation of peptides on a mixed-mode stationary phase (BS-C23) by a careful control of the buffer pH, the nature and concentration of anions, added to the buffer, and organic modifier content.  相似文献   

18.
The present article reviews the use of polyethylene glycol (PEG) or polyoxyethylene (POE) as the stationary phase for the separation of inorganic anions in ion chromatography and discusses about the retention mechanisms involved in the separation of anions on the novel stationary phases. PEG permanently coated on a hydrophobic stationary phase retained anions in the partition mode and allowed us to use high-concentration eluents because the retention of anions increased with increasing eluent concentration for most of the eluents. This situation was convenient to determine trace anions contained in seawater samples without any disturbance due to matrices. Chemically bonded POE stationary phases retained not only anions but also cations. Anions were retained in the ion-exchange mode, although POE chains possess no ion exchange sites. The retention behavior suggested that eluent cations could be trapped among multiple POE chains via ion-dipole interaction, and that the trapped cations worked as the anion-exchange sites. Anions could be separated using crown ether, i.e., cyclic POE, as the eluent additive with a hydrophobic stationary phase, where analyte anions were retained via electrostatic interaction with the eluent cation trapped on the crown ether.  相似文献   

19.
Four sensitising anions naphthalene-1,5-disulfonate (15-NDS), naphthalene-2,6-dicarboxylate (26-NDC), benzoate (BA) and terephthalate (TA) were intercalated into a Eu(3+)-doped Zn/Al layered double hydroxide. The carboxylate anions enhanced the red luminescence of Eu(3+) much more strongly than the sulfonate, in the descending order TA > 26-NDC > BA > 15-NDS.  相似文献   

20.
The stochastic theory of chromatography and an equilibrium based approach were used for the prediction of peak shape and retention data of anions. This attempt incorporating the potential advantages of two different chromatographic phenomena for analytical purposes. It is an integrated method to estimate kinetic and thermodynamic properties for the same chromatographic run of ions. The stochastic parameters of eluted anions, such as the residence time of the molecule on the surface of the stationary phase, and the average number of adsorption steps were determined on the basis of a retention database of organic and inorganic anions (formate, chloride, bromide, nitrate, sulphate, oxalate, phosphate) obtained by using carbonate/bicarbonate eluent system at different pHs (9-11) and concentrations (7-13 mM). In the investigated IC system the residence times are much higher and the average number of sorption steps is somewhat smaller than in RP-HPLC. The simultaneous application of the stochastic and the multispecies eluent/analyte model was utilized to peak shape simulation and the retention controlling of various anions under elution conditions of practical importance. The similarities between the measured and the calculated chromatograms indicates the predictive and simulation power of the combined application of the stochastic theory and the multiple species eluent/analyte retention model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号