首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
亚澳季风区水汽收支时空分布特征   总被引:2,自引:1,他引:2  
用1980~1989年NCEP/NCAR再分析资料计算了亚澳季风区视水汽汇并分析了其水汽收支时空分布特征。结果表明,该研究范围水汽收支的典型空间分布型为南北型,即南半球澳大利亚季风区与北半球亚洲季风区相反的分布形势,而且这种分布形势有明显的季节变化。冬季北半球亚洲季风区为水汽源,110~135 E之间大陆桥附近、80 E附近及40~50 E之间的三支越赤道水汽输送通道将北半球水汽输送到南半球澳大利亚季风区及南印度洋,成为水汽汇,夏季南半球澳大利亚季风区和南印度洋为水汽源,上述三支越赤道水汽输送通道实现与夏季反向的水汽输送,将水汽由南半球输送到北半球亚洲季风区,此时亚洲季风区为水汽汇。春季和秋季赤道辐合带为主要的水汽汇,亚澳季风区无明显越赤道水汽输送。  相似文献   

2.
1982年东亚及太平洋地区视热源及视水汽汇的分布   总被引:1,自引:0,他引:1  
本文对1982年东亚及太平洋地区逐月的视热源(Q1)及视水汽汇(Q2)进行了计算。发现视热源及视水汽汇的分布不仅存在明显的季节性变化,而且在1982年这一强厄尔尼诺年,视热源及视水汽汇分布和强度也有相应的异常变化。在1982年5~6月,厄尔尼诺开始时,印度尼西亚表现为视热汇及视水汽源,而赤道中太平洋为较强的视热源及视水汽汇。随着ENSO事件的发展,这一现象有增强的趋势。赤道太平洋的强视热源及视水汽汇也进一步向东发展。南海、西太平洋副热带及赤道东太平洋等区域强视热源和强视水汇的垂直分布相差很大;在海洋区域多为对流性降水  相似文献   

3.
用ECMWF1980-1983年资料探讨了亚洲季风区水汽汇季节内变化的标准差分布、空间型及传播,并讨论了水汽汇与热源(本文第I部分)季节内变化特点的异同。结果表明:一方面,季节内时间尺度上水汽汇的变化特征与热源比较一致(尤其是在夏季),变化显著区主要位于季风活跃区及其附近地区,与季风雨带的位置极为接近,且夏季陆地上清楚,冬季海洋上明显;EOF分析的主要空间型反映了印缅地区、中国东部及沿海、西太平洋  相似文献   

4.
定常波和瞬变波在亚洲季风区大气水分循环中的作用   总被引:12,自引:0,他引:12  
伊兰  陶诗言 《气象学报》1997,55(5):532-544
利用欧洲中心ECMWF10a逐日资料,对定常波和瞬变波在亚洲季风区大气水分循环中的作用进行了计算分析。结果表明,瞬变涡动总把水汽从高水汽含量区送到低水汽含量区,实现与平均环流相反的输送,维持了热带地区和中高纬地区水汽的平衡。夏季定常涡动输送的经向分量是将水汽从热带向副热带输送的主要机制,而瞬变涡动输送的经向分量则是把水汽从副热带输送到中高纬的主要机制。由于季风经圈环流的存在,使得亚洲季风区的热带地区为重要的水汽源区,而其副热带和中纬度地区是水汽汇区,这与同纬度其它地区相反。  相似文献   

5.
利用NCEP/NCAR和欧洲中心提供的逐日、逐月再分析资料(包括风场、湿度场资料,分别为17层等压面和23层等压面)和地面气压场资料,计算了宁夏区域的水汽汇和水汽通量。结果表明:宁夏区域水汽汇空间分布在春季为南北正东西负型,夏季为中间正、东西侧负型,秋季为南正北负型,冬季为东正西负型。夏季整个区域的水汽汇为正值。各季的多年时间变化具有相似的特点,为线性减少趋势,3次曲线拟合为先增后减再增的趋势。宁夏地区的水汽来自3个方向:西向、西南向和东南向,其中西南向的值较大,是宁夏的主要水汽通道。多年水汽汇的19a周期通过了0.1信度的红噪声检验,多年水汽汇序列变化较为剧烈,发生了多次突变。  相似文献   

6.
利用欧洲中心1980-1986年7年逐日资料和同期淮河流域的降水资料,计算了该地区的大气水汽汇的时间变化和空间分布,并分析了它们与降水量和蒸发量的关系。结果表明:淮河流域的7年平均降水量为857.5mm,年蒸发量为842.0mm,水汽收支大致相当。水汽汇的年际变化较大。7年平均水汽汇最大值在淮河上游信阳一带,最小值位于流域东部。淮河流域平均降水在7月份最大(211mm),蒸发量同时达到最大(167  相似文献   

7.
广东大尺度大气水汽汇的年际及年代际变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
用1958~2004年实测降雨量和NCEP/NCAR再分析资料,分析了广东地区大尺度水汽汇的年际和年代际变化特征及其与水汽通量变化的关系。结果表明,气候平均而言,广东春夏季大气向地面输送较多水资源,秋季地气间相互交换的水分相当,冬季由地面向大气输送较多的水资源。四季和年水汽汇的年际分量方差贡献均占主导地位,秋、冬季水汽汇的年际分量有约3年的显著周期。除了显著的年际分量外,冬、春季和年水汽汇的年代际分量方差贡献也较显著,占总方差的40%以上,以30多年的长周期变化为主,目前正处于由正位相向负位相转变的过渡期,预示今后广东有偏旱趋势。广东冬春季水汽汇的异常有显著的同相关系。另外,夏、秋季水汽汇的年代际分量有10~15年的显著周期。广东各季大气水汽汇偏强(弱)是由于从热带低纬输送到南海北部至华南地区的水汽增强(减弱),并伴随着水汽通量的辐合的增强(减弱)造成,但各季水汽通量异常分布型是有差别的。  相似文献   

8.
黄河上游水汽时空分布特征   总被引:8,自引:3,他引:8       下载免费PDF全文
本文以黄河上游大武、久治、甘德、玛曲、达日、河南、同德、泽库、班玛、中心站地面资料,及达日、红源、合作三站高空资料,分析了地面及高空水汽含量分布;并计算了该地区水汽通量及水汽通量散度,得出该地区水汽含量较高,水汽输送量大且存在辐合,形成水汽汇、有较大的增水潜力,利于人工增雨,起到增加黄河水量,加大电量生产,加快西部经济发展的目的。  相似文献   

9.
一次华南暴雨过程中水汽输送和热量的研究   总被引:24,自引:2,他引:24  
利用NCEP/NCAR 每日4 次全球再分析1°×1°网格资料,计算了2004年7月17-21日华南汛期暴雨过程的水汽通量、视热源(Q1)和视水汽汇(Q2),并探讨了其垂直分布特征.结果表明:华南汛期暴雨过程中存在大量的水汽和凝结潜热.孟加拉湾、南海和西太平洋都是这次华南暴雨过程重要的水汽供应源.暴雨区南边界为水汽的主要输入区,北边界为主要输出区,而暴雨区南、东边界的水汽输送主要发生在低层,西边界在中、低层的水汽输送大致相当.在这次降水过程中,视热源和视水汽汇的较大值与降水的大值区有很好的对应关系.视热源、视水汽汇和垂直上升运动与降水量的变化总体趋势是一致的.视热源垂直方向上的峰值在400 hPa附近,而视水汽汇呈双峰型特征,峰值分别在700 hPa和450 hPa附近.垂直平流项均是视热源、视水汽汇的主要贡献者.  相似文献   

10.
本文讨论分析了1994年盛夏东亚季风区垂直积分的平均水汽通量及水汽通量散度场,揭示出该时期东亚季风区存在四个强水汽泊;西太平洋、东涨、苏禄海、安达曼海和三个水汽汇:华北、长江中游南岸、南海南部。山西位于华北汇区中,盛夏降水的水汽是由安达曼海和莎经取西南气流,东南气流输送而来。  相似文献   

11.
1994年8月亚洲季风区水汽的源汇分布和输送   总被引:8,自引:0,他引:8  
用正压原始方程模式,对热带气旋穿越副热带高压的异常路径进行了数值试验,揭示出热带气旋自身特征及其与副高中心的经向距离、副高的位置和强度变化是直接影响热带气旋移动路径的敏感因子。也反映出热带气旋与其邻近的天气尺度的副热带高压以及β效应三者之间非线性相互作用的复杂机制。  相似文献   

12.
1998年中国大洪水时期的水汽收支研究   总被引:47,自引:12,他引:47  
丁一汇  胡国权 《气象学报》2003,61(2):129-145
文中首先通过水汽通量的势函数和流函数的计算 ,分析了 1998年中国大洪水时期的全球水汽背景 ,然后从雨情分析入手 ,将 1998年 5~ 8月长江、松花江流域洪水期分为 7个降水阶段、11个区域 ,对各时段、各区域的水汽收支作了诊断分析 ,得到中国大洪水时期部分水汽收支图像 ,揭示了水汽循环的一些规律 ,主要结果如下 :( 1) 1998年 5~ 8月 ,中国东部地区是全球最强的水汽汇区 ,这与 1991年夏季的情况相似。水汽通量的势函数极小值区 (最大辐合区 )对应强降水区 ,并且暴雨区的水汽辐合是由半球尺度的水汽输送造成 ,这表明 ,即使对于区域性大洪水 ,它必须从极大范围地区获得水汽供应。分析还表明 ,南海季风的爆发及其区域内西南方向水汽流的增强与印度洋势函数 (水汽辐散 )的增强关系密切。( 2 )大气的水汽收支表明 ,降水主要来自水汽的辐合项 ,辐合主要发生在大气低层 ;用余差法计算出的局地蒸发项一般为降水量的 13 ~ 12 ,因而水汽的再循环过程也十分重要 ;垂直输送项把低层的水汽向中上层输送 ,增加高层的水汽积累 ,为积云的发展和潜热释放提供条件。( 3 )南海地区的水汽输送情况与中国强降水密切相关 ,南海季风爆发后 ,其强劲南风气流输送水汽的区域往往是强降水发生区。对于整个中国东部大陆区而言 ,来  相似文献   

13.
2020年6月,我国江淮区域出现大范围持续性强降水过程,并引发了洪涝灾害。利用ERA5再分析资料对江淮区域的水汽收支平衡进行分析,并利用HYSPLIT后向轨迹模式分析了其水汽源地。结果表明:(1)ERA5再分析资料能较好地描述本次过程中江淮区域的水汽收支特征,其中水汽辐合项为主要贡献项,对水汽汇有较好的指示作用,同时,降水和水汽汇之间保持了较好的一致性变化。(2)南海是江淮区域6月持续性降水最主要的水汽源地,约50%的水汽来自南海。(3)6月江淮区域降水分布与水汽的输送密切相关,而水汽输送主要取决于西太平洋副热带高压的位置及其与北侧冷涡活动的共同作用。  相似文献   

14.
朱玮  刘芸芸  何金海 《气象科学》2007,27(2):155-161
利用NCEP/NCAR1957-2001年45a逐日的再分析资料,从地面开始积分计算整层的水汽输送通量,减去平均场的水汽的输送量,从而得到扰动水汽输送量,初步讨论了我国江淮地区水汽输送场的季节变化特征,并分析了我国江淮梅雨期旱、涝年平均场水汽输送与扰动场水汽输送的差异。分析发现:扰动场水汽输送与平均场水汽输送差别较大,源自孟加拉湾的平均水汽输送对我国东部地区的降水影响较大,但该地区的扰动水汽输送却主要是影响印度北部地区。而影响我国江淮地区的扰动场水汽输送主要来自于南海地区。源自西太平洋和我国北方的偏强的水汽输送是造成江淮梅雨期降水偏多的主要因子,扰动场水汽输送在我国江淮地区梅雨期降水异常时期与平均场水汽输送基本呈反方向输送,其差值散度场与平均场水汽输送差值散度则为反位相分布,因此说扰动场的水汽输送对平均场的水汽输送起削弱作用。  相似文献   

15.
Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989. With the aid of EOF analysis method, temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied. The results show that there is apparent seasonal transition of moisture sink and water vapor transport between Asian monsoon region and Australian monsoon region. In winter, the Asian monsoon region is a moisture source, in which three cross-equatorial water vapor transport channels in the "continent bridge". at 80°E and 40°E ~ 50°E transport water vapor to the Australian monsoon region and southern Indian Ocean which are moisture sinks. In summer, Australian monsoon region and southern Indian Ocean are moisture sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink. In spring and autumn, ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.  相似文献   

16.
江西2012年5月12日大暴雨过程水汽输送分析   总被引:1,自引:0,他引:1  
利用NCEP 1°×1°再分析资料、常规气象观测资料和WRF中尺度数值模式,对2012年5月12日江西出现的大暴雨天气水汽输送的过程进行分析。结果表明,从大尺度分析,此次暴雨过程的水汽输送特征并不典型,比湿、水汽通量、水汽通量散度、整层水汽输送等均不能满足江西出现暴雨时应该达到的水汽条件;但模拟的中小尺度水汽指数能够满足江西发生暴雨的水汽条件。此次暴雨过程的水汽主要来自南海地区。暴雨出现的区域与整层水汽大值区的水平梯度最大处相吻合。当整层水汽输送值较小时,水汽输送主要集中在中低层,但当整层水汽输送值较大时,水汽输送的高度高度超过500 hPa高度层,仅分析500 hPa高度层以下的水汽输送对暴雨预报会造成一定的误差。  相似文献   

17.
In the context of global warming, apparent decdal-interdecdal variabilities can be detected in summer precipitation in southern China. Especially around the 1990s, precipitation in South China experienced a phase transition from a deficiency regime to an abundance regime in the early 1990s, while the Yangtze River Valley witnessed a phase shift of summer precipitation from abundance to deficiency in the late 1990s. Pertinent analyses reveal a close relationship between such decadal precipitation shifts and moisture budgets, which is mainly modulated by the meridional component. This relationship can be attributed to large-scale moisture transport anomalies. Further, the HYSPLIT model is utilized to quantitatively evaluate relative moisture contributions from diverse sources during different regimes. It can be found that during the period with abundant precipitation in South China, the moisture contribution from the source of Indochina Peninsula-South China Sea increased significantly, while during the deficient precipitation regime in the Yangtze River Valley, moisture from local source, western Pacific and Indochina Peninsula-South China Sea contributed less to precipitation. It means some new features of relative moisture contributions from diverse sources to precipitation anomaly in southern China took shape after 1990s.  相似文献   

18.
本文通过多套观测与再分析降水资料的比较,分析了雅鲁藏布江流域夏季降水的特征,从水汽含量与水汽输送的角度检验了雅鲁藏布江水汽通道的特点,研究了流域夏季降水的年际变化及其原因。分析表明:(1)该流域夏季降水大值位于雅鲁藏布江出海口至大峡谷一带,观测中流域平均降水可达5.8 mm d-1。不同资料表现的降水空间分布一致,但再分析降水普遍强于观测,平均为观测的2倍左右。(2)该流域夏季的水汽主要来自印度洋和孟加拉湾的偏南暖湿水汽输送,自孟加拉湾出海口沿布拉马普特拉河上溯至大峡谷,即雅鲁藏布江水汽通道。水汽收支诊断表明,夏季流域南部(即水汽通道所在处)是水汽辐合中心,流域平均的辐合约9.5 mm d-1,主要来自风场辐合与地形坡度的贡献。(3)不同再分析资料表现的流域降水和水汽分布特征总体一致,但量值差异较大。NCEP(美国国家环境预报中心)气候预报系统再分析资料CFSR、日本气象厅再分析资料JRA-25较欧洲中期天气预报中心再分析ERA-Interim资料更适于研究该流域(青藏高原东南部)的水汽特征,因为后者给出的流域降水和水汽偏强。(4)近30年该流域夏季降水无显著趋势,以年际变率为主。年际异常的水汽辐合(约为气候态的35.4%)源自异常西南风导致的局地水汽辐合(纬向、经向辐合分别贡献了16.5%、83.5%),地形作用很小。流域夏季降水的年际变化是由印度夏季风活动导致的异常水汽输送造成的,其关键系统是印度季风区北部的异常气旋(反气旋)式水汽输送。  相似文献   

19.
Summary  The moisture flux and water balance over the South China Sea (SCS) during late boreal spring and summer are studied using the reanalysis data of the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP/NCAR). It is shown that the SCS is a water vapor sink during that period of time. Climatologically, the SCS works like a “reservoir of water vapor” for its special geographical location. In early May, water vapor is brought into the SCS area through its eastern, southern, and western boundaries, and is transported out of that area through its northern boundary. From June to August, the western and southern boundaries of the SCS are inflow passes of moisture flux to that region, while the northern and eastern boundaries are outflow passes. It is the intense convergence of moisture to the SCS area that maintains the local heavy precipitation. The northward branch of moisture flux feeds the precipitation over eastern China. Received May 5, 1999 Revised July 8, 1999  相似文献   

20.
This study simulated the moisture transport process of southern China annually first rainy season (SCAFRS) using a Lagrangian airflow trajectory model (Hybrid Single Particle Lagrangian Integrated Trajectory: HYSPLIT), to determine SCAFRS moisture transport characteristics and their relationship with South China Sea summer monsoon (SCSSM). It is found that the moisture transport paths and sources of SCAFRS are closely related to the onset of SCSSM. Divided by SCSSM onset dates, the moisture transport characteristics of SCAFRS are compared quantitatively. Before the onset of SCSSM, precipitation of SCAFRS mainly comes from western Pacific and eastern China. Their contributions are 24% and 25%, respectively. The amount of water vapor carried along the path coming from Bay of Bengal-South China Sea (BSC) is relatively high, but the contribution rate of this path to SCAFRS precipitation is relatively low. Mainly due to strong precipitation over Bay of Bengal before the onset of SCSSM, this region is a moisture sink, which makes most moisture deposit in this region and only a small portion of water vapor transported to southern China. After the onset of SCSSM, most water vapor is transported to southern China by the southwesterly paths. The Indian Ocean is the main moisture source, which contributes almost 25% to SCAFRS precipitation. The contributions of moisture originating from BSC and eastern China to southern China precipitation after the onset of SCSSM are 21% and 18%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号