首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The evolution of flight and echolocation in bats: another leap in the dark   总被引:3,自引:0,他引:3  
The earliest known complete bats, from the Eocene (49–53 Mya), were already capable of flapping flight and echolocation. In the absence of direct fossil evidence there have been many speculative scenarios advanced to explain the evolution of these behaviours and their distributions in extant bats. Theories assuming chiropteran monophyly have generally presumed the ancestral pre‐bat was nocturnal, arboreal and insectivorous. Following this assumption hypotheses can be divided into the echolocation first, flight first and tandem development hypotheses, all of which assume that flight evolved only once in the lineage. In contrast, the chiropteran diphyly hypothesis suggests that flight evolved twice. Evidence supporting and refuting the different hypotheses are reviewed. It is concluded that there are significant problems attached to all the current models. A novel hypothesis is advanced, which starts from the assumption that bats are monophyletic and the ancestral pre‐bat was arboreal, but diurnal and frugivorous. After the evolution of flight it is suggested that these animals were driven into the nocturnal niche by the evolution of raptorial birds, and different groups evolved either specialised nocturnal vision (megachiropterans) or echolocation (microchiropterans). A block on sensory modality transfer has retained this distribution of perceptual capabilities ever since, despite some Megachiroptera evolving rudimentary echolocation, and the dietary convergence of some Microchiroptera with the Megachiroptera. The new hypothesis overcomes many of the problems identified in previous treatments.  相似文献   

2.
许多动物的叫声频率呈现性二态现象。蝙蝠夜间活动,主要利用声音信号导航空间、追踪猎物、传递交流信息。本研究选择成体菲菊头蝠作为研究对象,检验回声定位声波频率性二态是否有利于性别识别。研究发现,菲菊头蝠回声定位声波频率参数具有显著性别差异。播放白噪音、雄性回声定位声波及雌性回声定位声波期间,实验个体的反应叫声数量依次递减。播放白噪音、雌性回声定位声波及雄性回声定位声波后,实验个体的反应叫声数量依次递增。白噪音诱导反应叫声强度高于回声定位声波诱导反应叫声强度。研究结果表明,菲菊头蝠回声定位声波的频率参数编码发声者性别信息,有利于种群内部的性别识别。本研究暗示,回声定位声波可能在蝙蝠配偶选择中扮演一定作用。  相似文献   

3.
The intermediate leaf-nosed bat ( Hipposideros larvatus ) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis , which is suggested to be a species distinct from Hipposideros larvatus . Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 119–130.  相似文献   

4.
5.
We examined the intra-individual variation in resting frequency of the constant-frequency component of the second harmonic of the pulse (F rest) over 4 years in a laboratory colony of the Taiwanese leaf-nosed bat (Hipposideros terasensis). Patterns of change in F rest were observed when individuals were added to or removed from the colony so that we investigated whether F rest was affected by neighboring colony members. F rest of each bat continually showed a long-term gradual change throughout the year, and all bats in the colony increased or decreased their F rest in the same direction as a group non-seasonally. The greatest short-term changes were observed when new bats with a relatively low F rest joined the colony and F rest of new bats converged with those of the original colony members around 8 –16 days after their introduction. Conversely, a single individual showed sudden short-term decrease in F rest after its isolation from other colony members. These findings strongly indicate that F rest is flexible according to the presence of neighboring conspecific bats. We suggest that the audio-vocal feedback for conspecific pulses appears to be involved in the short- or long-term intra-individual variation in F rest other than factors previously thought such as age or season.  相似文献   

6.
7.
Using a set of cranial morphometric characters, trends of variation in multivariate fluctuating asymmetry were evaluated and compared in populations of African fruit bats Rousettus egyptiacus and Eidolon helvum from the Gulf of Guinea islands, and the adjacent mainland. Levels of asymmetry were compared across populations and species, and significant differences were found in both comparisons. Differences coincided with species‐specific patterns of morphological and genetic differentiation. Concordance of correlation matrices of asymmetry was also compared. Results were significant; concordance is hypothesized to be a by‐product of developmental processes that produce the ‘fox‐like’ morphology shared by these species. Consistency of asymmetry patterns suggests that the developmental pathway producing it is highly canalized. A prediction of the above hypothesis is that a radical change in the ‘fox‐like’ structural pattern would result in breakage of the asymmetry parameter associated with it.  相似文献   

8.
The adaptive landscape provides the foundational bridge between micro‐ and macroevolution. One well‐known caveat to this perspective is that fitness surfaces depend on ecological context, including competitor frequency, traits measured, and resource abundance. However, this view is based largely on intraspecific studies. It is still unknown how context‐dependence affects the larger features of peaks and valleys on the landscape which ultimately drive speciation and adaptive radiation. Here, I explore this question using one of the most complex fitness landscapes measured in the wild in a sympatric pupfish radiation endemic to San Salvador Island, Bahamas by tracking survival and growth of laboratory‐reared F2 hybrids. I present new analyses of the effects of competitor frequency, dietary isotopes, and trait subsets on this fitness landscape. Contrary to expectations, decreasing competitor frequency increased survival only among very common phenotypes, whereas less common phenotypes rarely survived despite few competitors, suggesting that performance, not competitor frequency, shapes large‐scale features of the fitness landscape. Dietary isotopes were weakly correlated with phenotype and growth, but did not explain additional survival variation. Nonlinear fitness surfaces varied substantially among trait subsets, revealing one‐, two‐, and three‐peak landscapes, demonstrating the complexity of selection in the wild, even among similar functional traits.  相似文献   

9.
Brooks R 《Genetica》2002,116(2-3):343-358
The evolutionary significance of variation in mate choice behaviour is currently a subject of some debate and considerable empirical study. Here, I review recent work on variation within and among guppy (Poecilia reticulata) populations in female mate choice and mating preferences. Empirical results demonstrate that there is substantial variation within and among populations in female responsiveness and choosiness, and much of this variation is genetic. Evidence for variation in preference functions also exists, but this appears to be more equivocal and the relative importance of genetic variation is less clear cut. In the second half of this review I discuss the potential significance of this variation to three important evolutionary issues: the presence of multiple male ornaments, the maintenance of polymorphism and divergence in mate recognition among populations. Studies of genetic variation in mate choice within populations indicate that females have complex, multivariate preferences that are able to evolve independently to some extent. These findings suggest that the presence of multiple male ornaments may be due to multiple female mating preferences. The extreme polymorphism in male guppy colour patterns demands explanation, yet no single satisfactory explanation has yet emerged. I review several old ideas and a few new ones in order to identify the most promising potential explanations for future empirical testing. Among these are negative frequency dependent selection, environmental heterogeneity coupled with gene flow, and genetic constraints. Last, I review the relative extent of within and among-population variation in mate choice and mating preferences in order to assess why guppies have not speciated despite a history of isolation and divergence. I argue that variation within guppy populations in mate choice and enhanced mating success of new immigrants to a pool are major impediments to population divergence of the magnitude that would be required for speciation to occur.  相似文献   

10.
The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade‐offs. Here, we investigate whether a trade‐off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three‐dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade‐off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency‐specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号