首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modeling and prediction of chaotic time series require proper reconstruction of the state space from the available data in order to successfully estimate invariant properties of the embedded attractor. Thus, one must choose appropriate time delay τ and embedding dimension p for phase space reconstruction. The value of τ can be estimated from the Mutual Information, but this method is rather cumbersome computationally. Additionally, some researchers have recommended that τ should be chosen to be dependent on the embedding dimension p by means of an appropriate value for the time delay τw=(p1)τ, which is the optimal time delay for independence of the time series. The C-C method, based on Correlation Integral, is a method simpler than Mutual Information and has been proposed to select optimally τw and τ. In this paper, we suggest a simple method for estimating τ and τw based on symbolic analysis and symbolic entropy. As in the C-C method, τ is estimated as the first local optimal time delay and τw as the time delay for independence of the time series. The method is applied to several chaotic time series that are the base of comparison for several techniques. The numerical simulations for these systems verify that the proposed symbolic-based method is useful for practitioners and, according to the studied models, has a better performance than the C-C method for the choice of the time delay and embedding dimension. In addition, the method is applied to EEG data in order to study and compare some dynamic characteristics of brain activity under epileptic episodes  相似文献   

2.
The discrete geodesic flow on Nagao lattice quotient of the space of bi-infinite geodesics in regular trees can be viewed as the right diagonal action on the double quotient of PGL2Fq((t1)) by PGL2Fq[t] and PGL2(Fq[[t1]]). We investigate the measure-theoretic entropy of the discrete geodesic flow with respect to invariant probability measures.  相似文献   

3.
4.
The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τoτo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time <τo<τo and the same role for the case of the delay time >τo>τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.  相似文献   

5.
The stability of endoreversible heat engines has been extensively studied in the literature. In this paper, an alternative dynamic equations system was obtained by using restitution forces that bring the system back to the stationary state. The departing point is the assumption that the system has a stationary fixed point, along with a Taylor expansion in the first order of the input/output heat fluxes, without further specifications regarding the properties of the working fluid or the heat device specifications. Specific cases of the Newton and the phenomenological heat transfer laws in a Carnot-like heat engine model were analyzed. It was shown that the evolution of the trajectories toward the stationary state have relevant consequences on the performance of the system. A major role was played by the symmetries/asymmetries of the conductance ratio σhc of the heat transfer law associated with the input/output heat exchanges. Accordingly, three main behaviors were observed: (1) For small σhc values, the thermodynamic trajectories evolved near the endoreversible limit, improving the efficiency and power output values with a decrease in entropy generation; (2) for large σhc values, the thermodynamic trajectories evolved either near the Pareto front or near the endoreversible limit, and in both cases, they improved the efficiency and power values with a decrease in entropy generation; (3) for the symmetric case (σhc=1), the trajectories evolved either with increasing entropy generation tending toward the Pareto front or with a decrease in entropy generation tending toward the endoreversible limit. Moreover, it was shown that the total entropy generation can define a time scale for both the operation cycle time and the relaxation characteristic time.  相似文献   

6.
The decomposition effect of variational mode decomposition (VMD) mainly depends on the choice of decomposition number K and penalty factor α. For the selection of two parameters, the empirical method and single objective optimization method are usually used, but the aforementioned methods often have limitations and cannot achieve the optimal effects. Therefore, a multi-objective multi-island genetic algorithm (MIGA) is proposed to optimize the parameters of VMD and apply it to feature extraction of bearing fault. First, the envelope entropy (Ee) can reflect the sparsity of the signal, and Renyi entropy (Re) can reflect the energy aggregation degree of the time-frequency distribution of the signal. Therefore, Ee and Re are selected as fitness functions, and the optimal solution of VMD parameters is obtained by the MIGA algorithm. Second, the improved VMD algorithm is used to decompose the bearing fault signal, and then two intrinsic mode functions (IMF) with the most fault information are selected by improved kurtosis and Holder coefficient for reconstruction. Finally, the envelope spectrum of the reconstructed signal is analyzed. The analysis of comparative experiments shows that the feature extraction method can extract bearing fault features more accurately, and the fault diagnosis model based on this method has higher accuracy.  相似文献   

7.
Two-dimensional fuzzy entropy, dispersion entropy, and their multiscale extensions (MFuzzyEn2D and MDispEn2D, respectively) have shown promising results for image classifications. However, these results rely on the selection of key parameters that may largely influence the entropy values obtained. Yet, the optimal choice for these parameters has not been studied thoroughly. We propose a study on the impact of these parameters in image classification. For this purpose, the entropy-based algorithms are applied to a variety of images from different datasets, each containing multiple image classes. Several parameter combinations are used to obtain the entropy values. These entropy values are then applied to a range of machine learning classifiers and the algorithm parameters are analyzed based on the classification results. By using specific parameters, we show that both MFuzzyEn2D and MDispEn2D approach state-of-the-art in terms of image classification for multiple image types. They lead to an average maximum accuracy of more than 95% for all the datasets tested. Moreover, MFuzzyEn2D results in a better classification performance than that extracted by MDispEn2D as a majority. Furthermore, the choice of classifier does not have a significant impact on the classification of the extracted features by both entropy algorithms. The results open new perspectives for these entropy-based measures in textural analysis.  相似文献   

8.
In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid M with degree v and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n5 with the exception of log10·U2,5 and logv·U3,5 for some v.  相似文献   

9.
Through the research presented herein, it is quite clear that there are two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type A, such as glycolysis and the tricarboxylic acid cycle, apparently follows the second law well; Type B, as exemplified by the thermotrophic function with transmembrane electrostatically localized protons presented here, does not necessarily have to be constrained by the second law, owing to its special asymmetric function. This study now, for the first time, numerically shows that transmembrane electrostatic proton localization (Type-B process) represents a negative entropy event with a local protonic entropy change (ΔSL) in a range from −95 to −110 J/K∙mol. This explains the relationship between both the local protonic entropy change (ΔSL) and the mitochondrial environmental temperature (T) and the local protonic Gibbs free energy (ΔGL=TΔSL) in isothermal environmental heat utilization. The energy efficiency for the utilization of total protonic Gibbs free energy (ΔGT including ΔGL=TΔSL) in driving the synthesis of ATP is estimated to be about 60%, indicating that a significant fraction of the environmental heat energy associated with the thermal motion kinetic energy (kBT) of transmembrane electrostatically localized protons is locked into the chemical form of energy in ATP molecules. Fundamentally, it is the combination of water as a protonic conductor, and thus the formation of protonic membrane capacitor, with asymmetric structures of mitochondrial membrane and cristae that makes this amazing thermotrophic feature possible. The discovery of energy Type-B processes has inspired an invention (WO 2019/136037 A1) for energy renewal through isothermal environmental heat energy utilization with an asymmetric electron-gated function to generate electricity, which has the potential to power electronic devices forever, including mobile phones and laptops. This invention, as an innovative Type-B mimic, may have many possible industrial applications and is likely to be transformative in energy science and technologies for sustainability on Earth.  相似文献   

10.
Using an atom interferometer to measure the quotient of the reduced Planck's constant and the mass of a cesium‐133 atom ? / m Cs , the most accurate measurement of the fine structure constant α = 1 / 137.035999046 ( 27 ) is recorded, at an accuracy of 0.20 parts per billion (ppb). Using multiphoton interactions (Bragg diffraction and Bloch oscillations), the largest phase (12 million radians) of any Ramsey–Bordé interferometer and controlled systematic effects at a level of 0.12 ppb are demonstrated. Comparing the Penning trap measurements with the Standard Model prediction of the electron gyromagnetic anomaly a e based on the α measurement, a 2.5 σ tension is observed, rejecting dark photons as the reason for the unexplained part of the muon's gyromagnetic moment discrepancy at a 99% confidence level according to frequentist statistics. Implications for dark‐sector candidates (e.g., scalar and pseudoscalar bosons, vector bosons, and axial‐vector bosons) may be a sign of physics beyond the Standard Model. A future upgrade of the cesium fountain atom interferometer is also proposed to increase the accuracy of ? / m Cs by 1 to 2 orders of magnitude, which would help resolve the tension.  相似文献   

11.
Quantifying the urbanization level is an essential yet challenging task in urban studies because of the high complexity of this phenomenon. The urbanization degree has been estimated using a variety of social, economic, and spatial measures. Among the spatial characteristics, the Shannon entropy of the landscape pattern has recently been intensively explored as one of the most effective urbanization indexes. Here, we introduce a new measure of the spatial entropy of land that characterizes its parcel mosaic, the structure resulting from the division of land into cadastral parcels. We calculate the entropies of the parcel areas’ distribution function in different portions of the urban systems. We have established that the Shannon and Renyi entropies R0 and R1/2 are most effective at differentiating the degree of a spatial organization of the land. Our studies are based on 30 urban systems located in the USA, Australia, and Poland, and three desert areas from Australia. In all the cities, the entropies behave the same as functions of the distance from the center. They attain the lowest values in the city core and reach substantially higher values in suburban areas. Thus, the parcel mosaic entropies provide a spatial characterization of land to measure its urbanization level effectively.  相似文献   

12.
This paper presents a criterion, based on information theory, to measure the amount of average information provided by the sequences of outputs of the RC4 on the internal state. The test statistic used is the sum of the maximum plausible estimates of the entropies H(jt|zt), corresponding to the probability distributions P(jt|zt) of the sequences of random variables (jt)tT and (zt)tT, independent, but not identically distributed, where zt are the known values of the outputs, while jt is one of the unknown elements of the internal state of the RC4. It is experimentally demonstrated that the test statistic allows for determining the most vulnerable RC4 outputs, and it is proposed to be used as a vulnerability metric for each RC4 output sequence concerning the iterative probabilistic attack.  相似文献   

13.
Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model is established, and expressions of power output and thermal efficiency for the model are derived. Through numerical calculations, with the different fixed total heat conductances (UT) of two heat exchangers, the maximum powers (Pmax), the maximum thermal efficiencies (ηmax), and the corresponding optimal heat conductance distribution ratios (uLP(opt)) and (uLη(opt)) are obtained. The effects of the internal irreversibility are analyzed. The results show that, when the heat conductances of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal efficiency are constant values. When the heat source temperature ratio (τ) and the effectivenesses of the heat exchangers increase, the corresponding power output and thermal efficiency increase. When the heat conductance distributions are the optimal values, the characteristic relationships of P-uL and η-uL are parabolic-like ones. When UT is given, with the increase in τ, the Pmax, ηmax, uLP(opt), and uLη(opt) increase. When τ is given, with the increase in UT, Pmax and ηmax increase, while uLP(opt) and uLη(opt) decrease.  相似文献   

14.
One of the biggest challenges in characterizing 2-D image topographies is finding a low-dimensional parameter set that can succinctly describe, not so much image patterns themselves, but the nature of these patterns. The 2-D cluster variation method (CVM), introduced by Kikuchi in 1951, can characterize very local image pattern distributions using configuration variables, identifying nearest-neighbor, next-nearest-neighbor, and triplet configurations. Using the 2-D CVM, we can characterize 2-D topographies using just two parameters; the activation enthalpy (ε0) and the interaction enthalpy (ε1). Two different initial topographies (“scale-free-like” and “extreme rich club-like”) were each computationally brought to a CVM free energy minimum, for the case where the activation enthalpy was zero and different values were used for the interaction enthalpy. The results are: (1) the computational configuration variable results differ significantly from the analytically-predicted values well before ε1 approaches the known divergence as ε10.881, (2) the range of potentially useful parameter values, favoring clustering of like-with-like units, is limited to the region where ε0<3 and ε1<0.25, and (3) the topographies in the systems that are brought to a free energy minimum show interesting visual features, such as extended “spider legs” connecting previously unconnected “islands,” and as well as evolution of “peninsulas” in what were previously solid masses.  相似文献   

15.
16.
Aims: Bubble entropy (bEn) is an entropy metric with a limited dependence on parameters. bEn does not directly quantify the conditional entropy of the series, but it assesses the change in entropy of the ordering of portions of its samples of length m, when adding an extra element. The analytical formulation of bEn for autoregressive (AR) processes shows that, for this class of processes, the relation between the first autocorrelation coefficient and bEn changes for odd and even values of m. While this is not an issue, per se, it triggered ideas for further investigation. Methods: Using theoretical considerations on the expected values for AR processes, we examined a two-steps-ahead estimator of bEn, which considered the cost of ordering two additional samples. We first compared it with the original bEn estimator on a simulated series. Then, we tested it on real heart rate variability (HRV) data. Results: The experiments showed that both examined alternatives showed comparable discriminating power. However, for values of 10<m<20, where the statistical significance of the method was increased and improved as m increased, the two-steps-ahead estimator presented slightly higher statistical significance and more regular behavior, even if the dependence on parameter m was still minimal. We also investigated a new normalization factor for bEn, which ensures that bEn =1 when white Gaussian noise (WGN) is given as the input. Conclusions: The research improved our understanding of bubble entropy, in particular in the context of HRV analysis, and we investigated interesting details regarding the definition of the estimator.  相似文献   

17.
The effects of using a partly curved porous layer on the thermal management and entropy generation features are studied in a ventilated cavity filled with hybrid nanofluid under the effects of inclined magnetic field by using finite volume method. This study is performed for the range of pertinent parameters of Reynolds number (100Re1000), magnetic field strength (0Ha80), permeability of porous region (104Da5×102), porous layer height (0.15Htp0.45H), porous layer position (0.25Hyp0.45H), and curvature size (0b0.3H). The magnetic field reduces the vortex size, while the average Nusselt number of hot walls increases for Ha number above 20 and highest enhancement is 47% for left vertical wall. The variation in the average Nu with permeability of the layer is about 12.5% and 21% for left and right vertical walls, respectively, while these amounts are 12.5% and 32.5% when the location of the porous layer changes. The entropy generation increases with Hartmann number above 20, while there is 22% increase in the entropy generation for the case at the highest magnetic field. The porous layer height reduced the entropy generation for domain above it and it give the highest contribution to the overall entropy generation. When location of the curved porous layer is varied, the highest variation of entropy generation is attained for the domain below it while the lowest value is obtained at yp=0.3H. When the size of elliptic curvature is varied, the overall entropy generation decreases from b = 0 to b=0.2H by about 10% and then increases by 5% from b=0.2H to b=0.3H.  相似文献   

18.
Using a unique data set containing about 15.06 million truck transportation records in five months, we investigate the highway freight transportation diversity of 338 Chinese cities based on the truck transportation probability pij from one city to another. The transportation probabilities are calculated from the radiation model based on the geographic distance and its cost-based version based on the driving distance as the proxy of cost. For each model, we consider both the population and the gross domestic product (GDP), and find quantitatively very similar results. We find that the transportation probabilities have nice power-law tails with the tail exponents close to 0.5 for all the models. The two transportation probabilities in each model fall around the diagonal pij=pji but are often not the same. In addition, the corresponding transportation probabilities calculated from the raw radiation model and the cost-based radiation model also fluctuate around the diagonal pijgeo=pijcost. We calculate four sets of highway truck transportation diversity according to the four sets of transportation probabilities that are found to be close to each other for each city pair. It is found that the population, the gross domestic product, the in-flux, and the out-flux scale as power laws with respect to the transportation diversity in the raw and cost-based radiation models. It implies that a more developed city usually has higher diversity in highway truck transportation, which reflects the fact that a more developed city usually has a more diverse economic structure.  相似文献   

19.
20.
Non-extensive statistical mechanics (NESM), introduced by Tsallis based on the principle of non-additive entropy, is a generalisation of the Boltzmann–Gibbs statistics. NESM has been shown to provide the necessary theoretical and analytical implementation for studying complex systems such as the fracture mechanisms and crack evolution processes that occur in mechanically loaded specimens of brittle materials. In the current work, acoustic emission (AE) data recorded when marble and cement mortar specimens were subjected to three distinct loading protocols until fracture, are discussed in the context of NESM. The NESM analysis showed that the cumulative distribution functions of the AE interevent times (i.e., the time interval between successive AE hits) follow a q-exponential function. For each examined specimen, the corresponding Tsallis entropic q-indices and the parameters βq and τq were calculated. The entropic index q shows a systematic behaviour strongly related to the various stages of the implemented loading protocols for all the examined specimens. Results seem to support the idea of using the entropic index q as a potential pre-failure indicator for the impending catastrophic fracture of the mechanically loaded specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号