首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
生物量是反映生物发酵过程进展的重要参数,对生物量进行实时监测可用于对发酵过程的调控优化。为克服目前主要采用的离线方法检测生物量时间滞后和人工测量误差较大等缺点,本研究针对1,3-丙二醇发酵过程设计了一个基于傅里叶变换近红外光谱实时分析技术的生物量在线监测实验平台,通过对实时采集光谱预处理以及敏感光谱段分析,应用偏最小二乘算法,建立了1,3-丙二醇发酵过程生物量变化的动态预测模型。以底物甘油浓度为60 g/L和40 g/L的发酵过程作为外部验证实验,分析得到模型的预测均方根误差分别为0.341 6和0.274 3,结果表明所建立的模型具有较好的实时预测能力,能够实现对1,3-丙二醇发酵过程中生物量的有效在线监测。  相似文献   

2.
神经外科患者,尤其是脑血流自动调节功能受损的重症患者,脑氧饱和度是反应患者脑组织氧代谢情况的重要指标,实时、准确的脑氧饱和度监测方法对于指导选择有效的治疗措施和判断患者预后具有重要价值。基于血红蛋白不同氧合状态,即氧合血红蛋白(oxyhemoglobin,Hb O2),还原血红蛋白(deoxygenated hemoglobin,Hb)具有的差异性分子光谱,近红外光谱技术near infrared spectroscopy,NIRS)可监测人体局部组织氧饱和度。由于近红外射线能穿透颅骨直接获得脑组织内平均氧饱和度的特性,可协助临床实现无创持续监测脑氧饱和度的目的,近年来该技术在神经外科领域的应用研究获得了迅速发展,在颅脑创伤和其它神经外科疾病的应用研究中均取得了显著的进展,本文将对最新研究结果及其意义和未来发展方向进行综述。  相似文献   

3.
近红外光谱无创血糖检测   总被引:3,自引:0,他引:3  
糖尿病患者减少由糖尿病引起的并发症的重要手段是自我监测,目前主要的检测方法是有创或微创的,给患者不可避免的带来痛苦和不便。本文对利用近红外光谱技术进行无创血糖检测研究进行了综述,分析了其优缺点,总结了目前研究原理,并结合我们的研究提出了一些看法。  相似文献   

4.
针对发酵过程非线性和时变特点,提出了一种具有实时性的动态MPCA方法,采用多模型非线性结构代替传统MPCA单模型线性化结构,克服了后者不能处理非线性过程和实时性的问题,并避免了MPCA在线应用时预报未来测量值带来的误差,提高了发酵过程性能监测和故障诊断的准确性。对头孢菌素C发酵过程的拟在线仿真研究,验证了基于动态MPCA的统计过程监测的有效性。  相似文献   

5.
近红外光谱技术快速预测大豆氨基酸   总被引:1,自引:0,他引:1  
为探索近红外光谱技术在大豆氨基酸测试中的应用,寻找一种快速的检测方法,以167份大豆[Glycine max(L.)Merr.]种子为材料,采用傅里叶变换近红外光谱技术(FT-NIRS)对经高效液相色谱法(HPLC)分析的18种氨基酸含量进行模拟。结果显示:天冬氨酸(R2CV=0.85)、谷氨酸(R2CV=0.86)、丝氨酸(R2CV=0.82)、甘氨酸(R2CV=0.89)、酪氨酸(R2CV=0.83)、苯丙氨酸(R2CV=0.78)、异亮氨酸(R2CV=0.86)和色氨酸(R2CV=0.81)及15种氨基酸总和(R2CV=0.82)可利用FT-NIRS准确预测;苏氨酸、精氨酸、丙氨酸、缬氨酸、亮氨酸和胱氨酸检测模型有一定的参考价值,可用来进行相对含量的估测;而对组氨酸、赖氨酸、脯氨酸和蛋氨酸的预测不准确。本研究进一步证明,利用FT-NIRS技术预测大豆主要氨基酸组分是稳定可行的。  相似文献   

6.
近红外光谱技术在稻米特性检测中的应用(综述)   总被引:1,自引:0,他引:1  
近红外光谱技术是一种新型的检测分析技术,广泛应用于农业、林业、工业、医药以及食品等多个行业领域。文章综述近红外光谱技术在稻米特性检测中的应用概况,包括对大米淀粉、蛋白质和脂肪酸等营养物质的测定,大米糊化特性、粘稠度和食味特性的分析,水稻生长过程中氮、磷、钾和其他营养元素含量的分析,育种研究与品种鉴别,病害、重金属等有害物质以及其他方面。同时,指出该技术在当前检测应用中存在的一些问题,并针对目前发展趋势展望该技术的前景。  相似文献   

7.
红外光谱技术在生物过程监测中的应用   总被引:5,自引:0,他引:5  
在线监测化学组分的浓度对许多生物过程都是十分必要的。然而,探头需耐高温灭菌的要求和生物体系自身的复杂性给许多分析技术的在线监测带来了困难。近几年,随仪器和数据处理技术的迅速发展,应用红外光谱技术对生物过程的原位或在线监测日益广泛。本文对红外过程分析技术进行了较全面的综述,介绍了红外分析的原理、进展及在生物过程监测中的应用。  相似文献   

8.
近红外光谱技术(NIRS)在人体的应用与研究是近年来在国内外新兴的研究领域,因为其方便无创,成本低等优点,近20年来在不断发展和完善,引起大家的广泛关注。近红外光谱在700-900 mm范围内可以穿透一定深度的组织,组织内含氧血红蛋白、去氧血红蛋白对近红外光的吸收系数存在差异,经过传感器和计算机技术分析,得到组织的血氧参数。其测量参数为微动脉、微静脉和毛细血管中血液的血氧参数之加权平均,反应组织中的血氧参数,其中静脉血占主要地位,不同于普通脉搏式血氧监测仪的指端动脉血的血氧饱和度。基于近红外光谱技术的近红外组织血氧无创监测仪、功能性近红外光谱技术(f NIRS)、近红外光谱荧光技术等在临床医学,运动医学,神经生物学,认知科学,脑力疲劳,人机交互等新兴领域正发挥越来越重要作用。  相似文献   

9.
以树干毕赤酵母为发酵菌种,纯木糖为发酵底物,通过分批补料来提高糖利用率以及乙醇得率。结果表明,在24h内,最佳初始木糖浓度为80g/L,在28h的发酵周期中,可以将木糖浓度提高至90g/L,在32h发酵周期内可以将木糖浓度提高至100g/L。通过分批补料,乙醇浓度得到明显提高。当总糖浓度分别为80g/L、90g/L时,24h发酵周期内,分批补料次数以1次为宜,乙醇浓度分别达30.95g/L、32.60g/L,相比于不补料即一次性投料,乙醇浓度分别提高了9.36%、9.18%。总糖浓度100g/L,28h发酵周期内,补料2次效果最佳,乙醇浓度达37.49g/L,比一次性投料下提高了10.36%,较一次性投料达到相同发酵效果缩短了4h。  相似文献   

10.
以全自动生化分析仪测定结果为参考值,采用傅利叶变换近红外透射光谱技术,结合偏最小二乘法,建立人血清中胆固醇和甘油三酯的定标模型。利用内部交叉验证和自动优化功能对预测模型进行了优化,确定了最优建模参数。模型对人血清中胆固醇和甘油三酯定标样品集的预测值与参考值的相关系数r分别为0.9011、0.9593,预测校正标准误RMSECV分别为15.0mg/dL,21.6mg/dL。表明利用近红外光谱分析技术实现血清中胆固醇和甘油三酯快速检测是可行的。  相似文献   

11.
A near-infrared (NIR) spectroscopy technique for the control of lactic acid fermentation process has been proposed. Lactic acid, glucose, and biomass concentrations were determined by the NIR spectroscopy method. The three parameters examined were closely correlated to the results obtained with classical laboratory procedures. Moreover, the conditions for the on-line utilization of the NIR spectroscopy measurement system were pointed out. The great versatility of the NIR spectroscopy should permit its use for other fermentation processes. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Both intrinsic and observed kinetic investigations for those ethanol fermentations using self-flocculated yeast strains have been hindered by the lack of real online monitoring techniques and proper characterization methods for the flocs. An optical detecting technique, the focused beam reflectance measurement probe developed by Lasentec (Redmond, WA) was inserted into a fermentor to monitor the floc chord length distributions. Using a simulating system composed of the floc-buffer suspensions, the total floc chord length counts per second were directly correlated with the floc biomass concentrations so that the floc biomass concentrations can be in situ detected. Furthermore, a characterization method of the flocs was established by properly weighted treatments of the detected floc chord length distributions. When a real yeast floc ethanol fermentation system was detected during its intrinsic kinetic investigations in which the floc size needed to be controlled at a level of micrometer scale to eliminate inner mass transfer limitations, it was found and validated that CO(2) produced during fermentation exerted significant disturbances. By applying 1/length-weighted treatment, these disturbances were effectively overcome.  相似文献   

13.
Raman spectroscopy as a process analytical technology tool was implemented for the monitoring and control of ethanol fermentation carried out with Saccharomyces cerevisiae. The need for the optimization of bioprocesses such as ethanol production, to increase product yield, enhanced the development of control strategies. The control system developed by the authors utilized noninvasive Raman measurements to avoid possible sterilization problems. Real-time data analysis was applied using partial least squares regression (PLS) method. With the aid of spectral pretreatment and multivariate data analysis, the monitoring of glucose and ethanol concentration was successful during yeast fermentation with the prediction error of 4.42 g/L for glucose and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glucose concentration was maintained at 100 g/L by the automatic feeding of concentrated glucose solution. The control of glucose concentration during fed-batch fermentation resulted in increased ethanol production. Ethanol yield of 86% was achieved compared to the batch fermentation when 75 % yield was obtained. The results show that the use of Raman spectroscopy for the monitoring and control of yeast fermentation is a promising way to enhance process understanding and achieve consistently high production yield.  相似文献   

14.
Subcutaneous fat from Norwegian Landrace (n=3230) and Duroc (n=1769) pigs was sampled to investigate the sources of variation and genetic parameters of various fatty acids, fat moisture percentage and fat colour, with the lean meat percentage (LMP) also included as a trait representing the leanness of the pig. The pigs were from half-sib groups of station-tested boars included in the Norwegian pig breeding scheme. They were fed ad libitum to obtain an average of 113 kg live weight. Near-infrared spectroscopy (NIRS) was applied for prediction of the fatty acids and fat moisture percentage, and Minolta was used for the fat colour measurements. Heritabilities and genetic correlations were estimated with a multi-trait animal model using average information-restricted maximum likelihood (AI-REML) methodology. Fat from Landrace pigs had considerably more monounsaturated fatty acids, polyunsaturated fatty acids (PUFAs) and fat moisture, as well as less saturated fatty acids (SFAs) than fat from Duroc pigs. The heritability estimates (s.e. 0.03 to 0.08) for the various fatty acids were as follows: Palmitic, C16:0 (0.39 and 0.51 for Landrace and Duroc pigs, respectively); Palmitoleic, C16:1n-7 (0.41 and 0.50); Steric, C18:0 (0.46 and 0.54); Oleic, C18:1n-9 (0.67 and 0.57); Linoleic, C18:2n-6 (0.44 and 0.46); α-linolenic, C18:3n-3 (0.37 and 0.25) and n-6/n-3 ratio (0.06 and 0.01). The other fat quality traits revealed the following heritabilities: fat moisture (0.28 and 0.33), colour values in subcutaneous fat: L* (whiteness; 0.22 and 0.21), a* (redness; 0.13 and 0.24) and b* (yellowness; 0.07 and 0.17) and LMP (0.46 and 0.47). LMP showed high positive genetic correlations to PUFA (C18:2n-6 and C18:3n-3), which implies that selecting leaner pigs changes the fatty acid composition and deteriorates the quality of fat. Higher concentrations of PUFA are not beneficial as the ratio of n-6 and n-3 fatty acids becomes unfavourably high. Owing to the high genetic correlation between C18:2n-6 and C18:3n-3 and a low heritability for this ratio, the latter is difficult to change through selection. However, a small reduction in the ratio should be expected if selection aims at reducing the level of C18:2n-6. Selection for more C18:1n-9 is possible in view of the genetic parameters, which are favourable for eating quality, technological quality and human nutrition. The NIRS technology and the high heritabilities found in this study make it possible to implement fat quality traits to achieve the breeding goal in the selection of a lean pig with better fat quality.  相似文献   

15.
Many analytical procedures have been developed to determine the composition of reaction mixtures during transesterification of vegetable oils with alcohols. However, despite their accuracy, these methods are time consuming and cannot be easily used for on-line monitoring. In this work, a fast analytical method was developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol using Near InfraRed spectroscopy and a multivariate approach. The reactions were monitored through sequential scans of the reaction medium with a probe in a one-liter batch reactor without collecting and preparing samples. To calibrate the NIR analytical method, gas chromatography-flame ionization detection was used as a reference method. The method was validated by studying the kinetics of the EtONa-catalyzed transesterification reaction. Activation energy (51.0 kJ/mol) was also determined by considering a pseudo second order kinetics model.  相似文献   

16.
In situ Raman spectroscopy was employed for real‐time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm?1 C–C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high‐ and low‐concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two‐set calibration models for starch (R2 = 0.998, percent error = 2.5%) and ethanol (R2 = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS‐based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman‐based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Biotechnol. Bioeng. 2013; 110: 1654–1662. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.  相似文献   

18.
PC-3 human prostate cancer cells have been cultivated in a rotating wall vessel in which glucose, lactate, and glutamine profiles were monitored noninvasively and in real time by near-infrared (NIR) spectroscopy. The calibration models were based on off-line spectra from tissue culture experiments described previously (Rhiel et al., Biotechnol Bioeng 77:73-82). Monitoring performance was improved by Fourier filtering of the spectra and initial off-set adjustment. The resulting standard errors of predictions were 0.95, 0.74, and 0.39 mM for glucose, lactate, and glutamine, respectively. The concentration of ammonia could not be accurately measured from the same spectra. In addition, metabolite uptake and production rates were determined for PC-3 prostate cancer cells during exponential growth in batch-mode cultivation. Cells grew with a doubling time of 21 h and consumed glucose and glutamine at rates of 6.8 and 1.8 x 10(-17) mol/cell.s, respectively. This resulted in lactate and ammonia production rates of 11.9 and 1.3 x 10(-17) mol/cell.s, respectively. Compared with other monitoring technologies, this technology has many advantages for spaceflights and stand-alone units; for instance, calibration can be performed at one time and then applied in a reagentless, low-maintenance way at a later time. The resulting concentration information can be incorporated into closed-loop control schemes, thereby leading to better in vitro models of in vivo behavior.  相似文献   

19.
张倩倩  黄青 《菌物学报》2021,40(1):252-260
灵芝具有多种药理活性,多糖是其主要活性成分之一.目前灵芝多糖的定量常采用的比色法,使用比较繁琐,也缺乏一定的安全环保性.应用近红外光谱对灵芝进行多糖定量分析,发现对子实体直接分析存在定量不准的问题.为了快速准确地评估灵芝子实体多糖含量,本研究采用对灵芝子实体水提物进行近红外光谱检测与分析,由此建立了较好的定量模型.该模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号