首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
木质纤维素材料具有储量丰富、原料成本低及可再生等优点,人们期望其能替代石油作为原料来生产多种燃料和化学品,如生物柴油、生物氢、生物乙醇等,而木质纤维素解聚过程的高成本成为实现这一过程的主要障碍。一体化生物加工过程 (Consolidated bioprocessing,CBP) 是指在不添加任何外源水解酶的情况下,直接将木质纤维素原料一步转化为生物化学品的生物加工过程。通过基因工程,将水解酶的生成、木质纤维素的降解和生物产品的生产等功能集成到一个生物体上。对于CBP,人们通常有两种策略可供选择,即本地策略和重组策略。文中重点介绍了基于重组策略的CBP的原理、两种不同的应对方式、合成生物学及代谢工程对其的贡献以及未来所面临的挑战与展望。  相似文献   

2.
微生物酶的分子改性和人工进化的研究进展   总被引:7,自引:0,他引:7  
运用分子生物学技术对微生物来源的酶进行分子改性和人工进化在过去几年中取得了令人瞩目的进展。本文综述了用于酶分子改性和人工进化的主要分子生物学方法,如易错PCR技术、DNA体外随机拼接技术等及其在酶的分子进化和改性中应用成就。  相似文献   

3.
合成生物学家应用标准化、通用化的生物元件和操作创建可编程、功能导向的生物装置和生物系统,最终希望通过改善或创造生物体帮助人类解决若干重大挑战,如合成廉价新药品和精细化工产品、生产新型生物燃料、清理有毒废物、治疗癌症等重大疾病。然而要实现合成生物学所展现的美好愿景,还面临许多技术难点,  相似文献   

4.
多酶催化是利用多种生物酶构建反应体系或网络,在生物体外实现化学品的合成。在生物制造过程中,多酶的共固定化有利于提高酶的稳定性和重复使用率,更利于多酶间的协同催化。在精准调控下,多酶固定化载体的微囊材料有望实现多酶协同催化性能的最大化。本文中,笔者分析了微囊体系的特点,综述了微囊材料及其固定化多酶的优缺点,总结了微囊多酶固定化体系的应用案例,探讨了其未来发展和应用前景,以期为后续的研究提供参考和指导。  相似文献   

5.
生物活性物的生物制造是指利用包括细胞、微生物和酶在内的生物系统生产具有生物活性的天然或合成分子的过程。这些分子可用于制药、化妆品、农业和食品工业等领域,对提高生命质量、延长生命长度具有重要意义。在合成生物学和自动化等技术的推动下,生物制造领域迅速发展,为创造新产品和替代传统产品提供了绿色可持续的生产模式,为生物经济的增长、创新作出了重要贡献。本文结合生物活性物研发及生产情况,简要梳理并分析了国内外生物活性物的现有市场和未来发展。生物制造作为一种绿色、可持续的生产方式,将在生物经济发展中持续发挥重要作用。  相似文献   

6.
利用多酶级联催化反应合成精细化学品是近年来生物催化领域的研究热点。通过构建体外多酶级联体系,可以替代传统的化学合成法,实现多种双官能团功能化学品的绿色合成。本文系统介绍了多酶级联催化反应中不同级联方式的特点及其构建策略,总结了级联反应中元件酶常用的筛选方法、NAD(P)H和ATP等辅酶的再生策略及其在多酶级联反应中的应用,并且阐述了多酶级联催化反应体系在6种双官能团功能化学品,包括ω-氨基脂肪酸、烷基内酰胺、α,ω-二元羧酸、α,ω-二胺、α,ω-二醇、ω-氨基醇合成中的应用。  相似文献   

7.
发展绿色低碳的可再生能源体系已经成为重要的国际共识和方向,也是我国践行“双碳”目标、保障能源安全、走社会可持续发展的必要路径。本文聚焦电-氢-糖(electricity-hydrogen-carbohydrate, EHC)循环的新能源理论体系,重点综述了中国科学院天津工业生物技术研究所10余年来在基于体外多酶催化系统(in vitro synthetic enzymatic biosystem, ivSEB)的糖与水反应制氢、糖完全氧化产电,以及氢或电能固定CO2到糖的生物转化方面所做的工作,阐述体外多酶催化系统的设计原则、分子基础,并从电-氢-糖循环进一步延伸出以糖(淀粉)为核心的体外合成生物制造,结合最新相关研究进展,分析讨论体外多酶催化体系的特色和优缺点,并展望未来发展方向,促进经济和社会的绿色低碳可持续发展。  相似文献   

8.
铁硫簇是普遍存在于生物体中的最古老的生命物质之一.铁硫簇基本结构单元有[2Fe-2S]、[3Fe-4S]、[4Fe-4S]及.[8Fe-7S]等几种形式,不同结构的铁硫簇具有不同的生物学功能,主要包括参与电子传递、底物的结合与激活、铁/硫的存储、基因表达的调控、酶活的调控等.铁硫簇既可在生物体内合成,也可在体外进行人工组装.铁硫簇的生物合成主要和NIF、ISC、SUF这三个系统有关.研究已确定了参与铁硫簇合成的关键蛋白,但对它们分子水平上的机制及如何进行相互作用在体内外合成铁硫簇的认识尚待进一步研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号