首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
A magnetic sensor for detection of Pb~(2+) has been developed based on Fe/Fe_3O_4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb~(2+) thus inducing the transformation of Fe/Fe_3O_4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T_2) of the surrounding water protons. Upon addition of the different concentrations of Pb~(2+) to an aq. solution of DHCA functionalized Fe/Fe_3O_4 nanoparticles(DHCA-Fe/Fe_3O_4 NPs)([Fe] = 90 mmol/L), the change of T_2 values display a good linear relationship with the concentration of Pb~(2+) from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb~(2+), DHCA-Fe/Fe_3O_4 NPs exhibited a high selectivity over other metal ions.  相似文献   

2.
合成了羧甲基-羟丙基-β-环糊精修饰的Fe_3O_4磁性纳米材料(CM-HP-β-CDCP-MNPs),建立了CM-HP-β-CDCP-MNPs固相萃取-火焰原子吸收分光光度法分离分析水样中Pb~(2+)、Cu~(2+)的方法。用红外光谱法、热重分析法、透射电子显微镜法对合成的磁性纳米材料进行了表征,并对CM-HP-β-CDCP-MNPs吸附Pb~(2+)、Cu~(2+)的吸附条件和脱附条件进行了优化。在优化条件下,CM-HP-β-CDCP-MNPs对Pb~(2+)的吸附率95%,对Cu~(2+)的吸附率85%,吸附容量为70.32 mg·g~(-1)(Pb~(2+))和26.53 mg·g~(-1)(Cu~(2+))。用所提方法对瘦西湖水样及大运河水样进行了测定,Pb~(2+)回收率为90.1%~103.8%,RSD为2.6%~5.0%;Cu~(2+)回收率为91.2%~104.9%,RSD为3.2%~4.6%。  相似文献   

3.
通过水热合成法和溶胶凝胶法制备Fe_3O_4@NiSiO_3磁性纳米粒子,该纳米粒子微球具有均一的形貌、良好的磁性和分散性。将合成的Fe_3O_4@NiSiO_3磁性纳米粒子作为磁性固相萃取(MSPE)介质,并结合高效液相色谱(HPLC)建立了水样中痕量微囊藻毒素MC-LR的分析方法。在优化实验条件下,方法在0.25~146.5μg/L浓度范围内呈良好的线性关系,相关系数(r)为0.999 1,检出限为0.011μg/L。将该方法用于纯水中微囊藻毒素的分析,回收率为81.0%,对实际水样的回收率为66.7%~72.0%。表明Fe_3O_4@NiSiO_3磁性纳米粒子具有良好的选择性富集能力,可用于水中痕量微囊藻毒素的萃取。  相似文献   

4.
利用水热法合成Fe_3O_4纳米粒子,并通过层层自组装的方法合成以Fe_3O_4为核、金属-有机骨架(MOFs)为壳的多功能核-壳磁性微球Fe_3O_4@HKUST-1;最后利用Cu2+与-SH之间的配位作用,对磁性微球的壳层进行长链烷基修饰,得到Fe_3O_4@HKUST-1-C_(18)。通过FT-IR,XRD,SEM,TEM等手段对Fe_3O_4@HKUST-1-C_(18)进行表征,并以该复合材料为磁固相萃取吸附剂用于环境水样中的多环芳烃的富集。同时本文还优化了吸附剂用量、萃取时间、离子强度等,在最佳条件下,方法定量限为0.031~0.49μg/L,回收率为68.3%~109.6%。  相似文献   

5.
采用一步法合成了氨基化四氧化三铁(NH_2-Fe_3O_4)磁性纳米材料,并以XRD,IR等手段对其进行了表征.将NH_2-Fe_3O_4组装到磁性玻碳电极表面,得了NH_2-Fe_3O_4修饰的磁玻碳电极,并以该修饰电极为工作电极,研究了其电化学性能.利用差分脉冲溶出伏安法研究了铅(Ⅱ)离子和铜(Ⅱ)离子在该修饰电极上的电化学行为.结果表明:NH_2-Fe_3O_4纳米粒子可显著提高Pb~(2+)和Cu~(2+)在电极表面的富集量,提高溶出峰电流.由于差分脉冲溶出伏安曲线中Pb~(2+)和Cu~(2+)的溶出峰电位差较大,且没有相互干扰,所以该电极可用于Pb~(2+)和Cu~(2+)的同时测定.  相似文献   

6.
分子印迹磁性固相萃取/液相色谱法检测奶制品中的双酚A   总被引:1,自引:0,他引:1  
以双酚A(BPA)为模板分子,磁性二氧化硅(Fe_3O_4@SiO_2)为载体,4-乙烯基吡啶(4-VP)为功能单体,采用表面分子印迹技术制备了双酚A磁性分子印迹聚合物微球(Fe_3O_4@SiO_2-MIPs)。通过红外光谱、透射电镜等对Fe_3O_4@SiO_2-MIPs进行了结构和形貌的表征。将制得的Fe_3O_4@SiO_2-MIPs作为磁性吸附剂,分离富集奶制品中的BPA,建立了分子印迹磁性固相萃取/液相色谱法测定奶制品中BPA的新方法。结果表明,在优化条件下,Fe_3O_4@SiO_2-MIPs对BPA具有良好的选择性,最大吸附容量达13.50 mg/g,在0.05~5.0 mmol/L浓度范围内有良好的线性关系(r2=0.993 4),方法检出限为0.037μg/L,样品加标回收率为86.2%~93.1%,相对标准偏差为2.9%~3.8%。该方法高效快速,选择性好,可用于牛奶样品中痕量BPA的检测。  相似文献   

7.
采用化学共沉淀法合成硅包覆的磁性纳米粒子Fe_3O_4@SiO_2,进一步通过六亚甲基二异氰酸酯将吡哆酰肼分子(Pyh)接枝到Fe_3O_4@SiO_2表面,制得功能化的磁性纳米复合物(Fe_3O_4@SiO_2-Pyh)。通过傅里叶变换红外光谱、透射电子显微镜、X射线衍射等技术手段对其结构、形貌和磁性能进行了表征。Fe_3O_4@SiO_2-Pyh粒子具有规则的核壳结构,粒径分布在50~55 nm,壳层厚度约为15 nm。Fe_3O_4@SiO_2-Pyh结构中含有酰腙类活性基团—CO—NH—N=CH—,能与Cu~(2+)形成稳定的配合物,在此基础上采用紫外可见吸收光谱特性建立了测定Cu~(2+)的分析方法,线性范围为3.4×10~(-7)~4.5×10~(-6)mol/L,检出限为1.03×10~(-7)mol/L。此外,利用Fe_3O_4@SiO_2-Pyh良好的磁响应,通过外部磁场能够有效地除去水中过量的铜离子,在环境领域具有潜在的应用价值。  相似文献   

8.
唐君  郭凯珠  陈文东  宋培培  封顺  胡巢凤  许瑞莲  田瑞军 《色谱》2016,34(12):1264-1270
建立了基于Fe_3O_4/乙二胺四乙酸(EDTA)磁性粒子的集成化蛋白质组学研究方法。首先用共沉淀法合成EDTA负载的Fe_3O_4/EDTA磁性粒子。在优化的溶液条件下(95%乙腈-1%三氟乙酸,体积分数),100μg Fe_3O_4/EDTA磁性粒子可吸附12.4μg牛血清白蛋白(BSA),吸附容量是商品化磁珠的10倍左右。以BSA作为标准蛋白质,对所合成的Fe_3O_4/EDTA磁性粒子作为蛋白质组学反应器的酶解时间进行了优化,发现Fe_3O_4/EDTA磁性粒子处理BSA酶解1、8和16 h的肽段序列覆盖率和特征肽段结果相当。因此,可以将复杂的蛋白质样品前处理时间缩短至2 h内。最后,将所合成的Fe_3O_4/EDTA磁性粒子应用于血清的蛋白质组学研究,成功地鉴定出218种蛋白质,其中包含了41种美国食品药品管理局(FDA)认证的生物标志物。所发展的基于Fe_3O_4/EDTA磁性粒子的蛋白质组学样品前处理方法将蛋白质样品预富集、还原、烷基化、酶解、多肽除盐和洗脱等步骤集成到一起,减少了样品转移和处理所造成的损失。这种技术具有快速、灵敏和易于操作的特点,可用于临床蛋白质组学研究。  相似文献   

9.
将SiO_(2)包覆的Fe_(3)O_(4)磁性纳米材料(SiO_(2)@Fe_(3)O_(4))表面偶联识别黄曲霉毒素B_(1)(AFB_(1))的抗体(Ab),用于特异性分离富集谷物中的AFB_(1),进而与高效液相色谱-串联质谱法(HPLC-MS/MS)结合,用于大米、玉米和小麦中AFB_(1)的高效准确检测。采用微波辅助水热合成法制备得到Fe_(3)O_(4)磁性纳米颗粒,并用100μL正硅酸乙酯(TEOS)对其进行SiO_(2)的包覆,得到SiO_(2)@Fe_(3)O_(4)磁性纳米材料,随后进行抗体的偶联得到Ab-SiO_(2)@Fe_(3)O_(4);以pH=7.4的磷酸盐缓冲液(PBS)作为富集缓冲液,加入8 mg Ab-SiO_(2)@Fe_(3)O_(4),在37℃下反应10 min进行AFB_(1)的分离富集,随后采用甘氨酸-盐酸(Gly-HCl)缓冲液对Ab-SiO_(2)@Fe_(3)O_(4)分离富集的AFB_(1)进行洗涤,将洗涤液氮吹后复溶,采用高效液相色谱-串联质谱法检测。在最佳条件下,方法检测AFB_(1)的线性范围为2~50μg/L,相关系数(R^(2))>0.99,检出限为0.04μg/kg,定量限为0.13μg/kg。在4个不同加标水平下,AFB_(1)在3种谷物基质中的加标回收率为76.21%~92.85%,RSD≤5.29%。大米、玉米和小麦等实际谷物样品中AFB_(1)的测定结果显示,在1个小麦样品和2个玉米样品中检出AFB1,其含量分别为0.38、0.13和0.47μg/kg,其他样品中并未发现AFB_(1)。方法将磁性纳米材料与HPLC-MS/MS相结合,实现了AFB_(1)的高效分离富集,富集材料成本低廉,储存性能好,在30 min内即可完成前处理过程,可在较短的时间内实现大批量样品的实际分析,在谷物中真菌毒素的检测方面具有良好的应用前景。  相似文献   

10.
以硫脲、聚乙烯亚胺和大豆分离蛋白(SPI)为原料制备了多孔大豆蛋白复合材料(TPS)并进行表征。研究了TPS对Pb~(2+),Cd~(2+)的微柱分离富集性能。优化实验条件后,TPS对Pb~(2+),Cd~(2+)可实现定量吸附,吸附容量分别为20. 56和25. 13 mg/g,富集系数分别为200,150倍,经过100次吸附和解吸循环后TPS吸附性能未发生改变,准二级动力学方程适合描述材料对Pb~(2+),Cd~(2+)的吸附行为。建立了微柱分离富集-石墨炉原子吸收光谱测定Pb~(2+),Cd~(2+)的新方法,Pb~(2+),Cd~(2+)的检出限分别为0. 2和0. 06 ng/mL,线性范围分别为0. 02~0. 25μg/mL和0. 001~0. 015μg/mL。该方法成功应用于国标样品、鱿鱼和海水中Pb~(2+),Cd~(2+)分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号