首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The result of transferring a polarizable iodide anion across the H2O-CCl4 liquid/liquid interface was investigated in this study. The computed transfer-free energy profile or potential of mean force exhibits a minimum near the Gibbs dividing surface. These system characteristics are similar to those found in a corresponding study of iodide transfer across the H2O-vapor interface; however, the free energy minimum was lower at the H2O-vapor interface. Molecular dynamics simulations were also carried out to compare the concentrations of NaCl, NaBr, and NaI at the H2O-vapor and H2O-CCl4 interfaces. While the concentration of bromide and iodide ions were lower at the H2O-CCl4 interface when compared to the H2O-vapor interface, the chloride ion concentrations were similar at both interfaces. Analysis of the solvation structures of iodide and chloride ions revealed that the more polarizable iodide ion was less solvated than the chloride ion at the interface. This characteristic brought the iodide ion into greater contact with CCl4, resulting in repulsive interactions with CCl4 and reducing its tendency to move to the interface.  相似文献   

2.
十二烷基苯磺酸钠在SiO2表面聚集的分子动力学模拟   总被引:2,自引:0,他引:2  
采用分子动力学方法研究了阴离子表面活性剂十二烷基苯磺酸钠(SDBS)在无定形SiO2固体表面的吸附. 设置不同的水层厚度, 观察固液界面和气液界面吸附的差异. 模拟发现表面活性剂分子能够在短时间内吸附到SiO2表面, 受碳链和固体表面之间相互作用的影响形成表面活性剂分子层, 并依据吸附量的大小形成不同的聚集结构; 在水层足够厚的情况下, 由于有较多的表面活性剂分子吸附在固体表面,从而形成带有疏水核心的半胶束结构; 计算得到的成对势表明极性头与钠离子或水分子之间的结合或解离与二者之间的能垒有关, 解离能垒远大于结合能垒, 引起更多Na+聚集在极性头周围而只有少数Na+存在于溶液中; 无论气液还是固液界面, 极性头均伸向水相, 与水分子形成不同类型的氢键. 模拟表明, 分子动力学方法可以作为实验的一种补充, 为实验提供必要的微观结构信息.  相似文献   

3.
The composition and properties of the adsorption films of dodecylammonium chloride/sodium dodecyl sulfate at the air/water interface depend on interactions between the film molecules and equilibria in the bulk phase (monomer-micelle and/or monomerprecipitate equilibria).The negative value of surface molecular interaction parameter mon calculated using the regular solution theory indicates strong attractive interactions between adsorbed molecules. Electrostatic interactions between oppositely charged ionic head groups enhance the adsorption of surfactants and decrease the minimum molar area of surfactant molecules at the air/water interface. The addition of an oppositely charged surfactant enhances packing at the air/water interface and transition from a liquid expanded to a liquid condensed state. Surface potential measurements reveal positive values for the mixtures investigated, implying the cationic surfactant ions are closer to the surface than the anionic ones.  相似文献   

4.
The constrained molecular-dynamics technique was employed to investigate the transport of a nitrate ion across the water liquid/vapor interface. We developed a nitrate-ion-water polarizable potential that accurately reproduces the solvation properties of the hydrated nitrate ion. The computed free-energy profile for the transfer of the nitrate ion across the air/water interface increases monotonically as the nitrate ion approaches the Gibbs dividing surface from the bulk liquid side. The computed density profiles of 1M KNO(3) salt solution indicate that the nitrate and potassium ions are both found below the aqueous interface. Upon analyzing the results, we conclude that the probability of finding the nitrate anion at the aqueous interface is quite small.  相似文献   

5.
Electrostatic interactions strongly affect the immersion depth of nanoparticles into an interface. We prove this statement by measuring the diffusion constant of charged nanoparticles at a sodium chloride solution/air interface. Interfacial diffusion of nanoparticles slows down with increasing ionic strength of the sodium chloride solution. Hydrodynamic calculations are used to estimate the immersion depth from the diffusion constant, suggesting that nanoparticles with a carboxylate surface are only slightly immersed into a bare air/water interface. With increasing molarities of sodium chloride, the immersion depth increases to complete immersion for a 10(-2) molar solution. Our experiments show that the location of nanoparticles at interfaces is determined by an intricate interplay between the electrostatic properties of the solution/air interface, the solution/solid interface, and the classical contact angle.  相似文献   

6.
The surface potential (DeltaV) of the air/sodium chloride solution interface was measured by using an ionizing (241)Am electrode method at 298.2 K. The surface potential steeply increased from 0 up to 15 mV with increasing concentration, then gradually increased up to 20 mV between 1 and 10 mmol dm(-3), and finally stayed almost constant at 20 mV up to the concentration of 20 mmol dm(-3). This result means that sodium ions concentrate more just near the air/solution interface, whereas chloride ions concentrate more far below the interface above the bulk region of electroneutrality. The dipole moment was derived from the surface potential value, from which the width of the interfacial layer was estimated as a function of the magnitude of electric charge. As for the sodium dodecyl sulfate solution, on the other hand, the surface potential steeply decreased from 0 down to -80 mV with increasing concentration from 0 to 0.01 mmol dm(-3), then rapidly increased up to -50 mV between 0.1 and 3 mmol dm(-3), then linearly increased up to 0 mV with increasing concentration from 3 mmol dm(-3) up to the CMC, 8 mmol dm(-3), then quite rapidly decreased again down to -82 mV from the CMC to 10 mmol dm(-3), and finally stayed almost constant at -82 mV up to the concentration of 20 mmol dm(-3). The above variations of the surface potential cannot be elucidated by the conventional surface excess, and therefore, the new concept of surface adsorption was presented for a simple salt and a typical anionic surfactant.  相似文献   

7.
The interaction of iron III salts and cetylpyridinium chloride (CPC) has been studied at the air/water and silica/water interfaces. The surface tension of cetylpyridinium chloride has been determined in aqueous solutions in the presence of iron III chloride and iron III nitrate at two constant pH values, namely, 3.5 and 1.2. It is shown that the surface tension of the cationic surfactant depends upon the ionic strength of the solution through the pH adjustment in the presence of the former salt but not in the presence of the latter. The effect of iron III nitrate on the surface tension of CPC is similar to that of potassium nitrate, indicating that the iron III various-hydrolyzed species do not interfere with the composition of the air/water interface. The competitive adsorption of iron III nitrate salt and the cationic surfactant at a silica/water interface was next investigated. The adsorption isotherms were determined at pH 3.5. It is shown that although the iron III ions, which were added to the silica dispersion in the presence of the cetylpyridinium ions, were strongly bound to the anionic surface sites, the surfactant ions are not salted out in the solution but remain in close vicinity of the silica surface. Conversely as the cationic surfactant is added first to the silica dispersion in the presence of the adsorbed iron III ions, the metal ions and the surfactant ions are both coadsorbed onto the silica surface. It is suggested that iron III hydrolyzed or free cations and the cationic surfactant molecules may not compete for the same adsorption sites onto the silica surface.  相似文献   

8.
《Vibrational Spectroscopy》2004,34(1):169-173
The monolayer of the mixture of octadecanoic acid and octadecylamine with molar ratio 1:1 has been investigated at the air–water interface. It was found that the monolayer shows a rather stable state at the surface pressure of 30 mN/m and this monolayer can be transferred onto a CaF2 plate by Langmuir–Blodgett (LB) technique. The infrared spectra of LB films indicated that octadecylammonium octadecanoate is formed by an intermolecular proton exchange between adjacent carboxylic and aminic groups (COO and NH3+). In three-layer LB film, the CH2 scissoring mode of the long hydrocarbon chains of octadecylammonium octadecanoate shows a broad band feature at about 1468 cm−1 while this vibrational mode of three-layer LB film of the mixture (1:1) of deuterated stearic acid and octadecylamine (octadecylammonium octadecanoate-d35, C18H37NH3+C17D35COO) only shows a narrow band. The broad feature of the CH2 scissoring mode in octadecylammonium octadecanoate probably originates from the coupling between the chain of stearic acid and that of octadecylamine while this kind of coupling could be completely removed in octadecylammonium octadecanoate-d35. Another conclusion presented in this paper is that there are no couplings among the chains of fatty acid or among the chains of octadecylamine in LB films of octadecylammonium octadecanoate.  相似文献   

9.
The structure of the adsorption layer at the solid/gas interface is characterized, as a function of conditioning concentration, by the measurement of preceding contact angles. The contact angles were determined tensiometrically (plate method) and cinema tographically (capillary rise method) in the system glass or mercury/n-dodecyl ammonium chloride solution/air, respectively. In the dependence of contact angle on concentration, four regions are provable. These regions correlate with the surfactants, which are bound to adsorption in a heteropolar mode or by van der Waals forces of interaction, with the formation of layer-like coverage and with bilayers. Special attention was given to the fact that loosely bound surfactants are transferred from the solid/gas interface to the liquid/gas interface and cause a reduction of the preceding contact angle.Publication No. 1077 from the Research Institut of Mineral Processing, Academy of Sciences of the GDR, Freiberg, G.D.R.  相似文献   

10.
Ion exchange adsorption is an important physicochemical process at solid/liquid interfaces. In this study, an approach was established to estimate the activation energy of cation exchange reaction on the charged surface, considering Hofmeister effects. The experimental results showed that Hofmeister effects strongly affect the ionic adsorption equilibrium on the charged particle surface. The position of the adsorbed counterion in the diffuse layer was predicted according to the established model, and the ion exchange activation energies for different bivalent cations were estimated via the cation exchange experiments. The activation energy decreases with increasing ion concentration, and the adsorption saturation of cations is a function of the activation energy at different concentrations. The established model of cation exchange adsorption in the present study has universal applicability in solid/liquid interface reactions.  相似文献   

11.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

12.
研究了双头基两亲分子(Bolaamphiphile)N,N′-1,14-十四烷二酸酰-L-谷氨酸二乙酯(L-HDGE)和它的对映异构体D-HDGE在气液界面的组装;考察了HDGE分子的界面组装结构以及头部基团的手性,膜压和离子液体亚相对组装结构的影响.采用原子力显微镜(AFM)和傅里叶变换红外(FTIR)光谱对组装体的微观结构和组装机理进行了研究.结果表明,HDGE(L-HDGE或D-HDGE)在水亚相上可以组装得到平行排列,宽为50-120nm,高为1-5nm的纳米线.而将L-HDGE与D-HDGE混合组装时,只会得到疏松的薄膜结构.红外光谱表明HDGE分子的异手性相互作用强于同手性作用.在表面压继续上升时,纳米线可以发生一定聚集生成纳米带.亚相为一定浓度的离子液体时,会促进分子的聚集,在膜压的共同影响下,纳米带可以卷曲形成螺旋结构,螺旋的方向取决于头基的分子手性.  相似文献   

13.
Molecular dynamics simulations are done to investigate the structure and dynamics of a thin [Bmim][MeO4] film in contact with a hydroxylated silica surface on one side and with vacuum on the other. An examination of the microscopic structure of ionic liquid (IL) film shows that strong layered anionic/cationic structures are formed at both interfaces. At the silica interface, the imidazolium rings are closer to the silica surface (compared to anions) and are coplanar with it. At the vacuum interface, the charged imidazolium ring more concentrates in the interior of the film, but the butyl side chain stretches out toward the vacuum interface. While there exists an excess concentration of the cations at the silica interface, at the vacuum interface an excess concentration of anions (dissolved in the butyl chain) is found. The influence of the interface on the dynamical properties is shown to depend on their time scales. A short-time dynamical property, such as hydrogen bond formation is not noticeably perturbed at the interface. In contrary, long-time properties such as ion-pair formation/rupture and translation of ions across the film are largely decelerated at the silica interface but are accelerate at the vacuum interface. Our findings indicate that the structural relaxation time of ion-pairs, is comparable to diffusion time scale in the IL film. Therefore, ion-pairs are not stable species; the IL is composed of short-lived ion-pairs and freely diffusing ions. However, the structural relaxation times of ion-pairs is still long enough (comparable to the time scale of diffusion) to conclude that correlated motions of counterions influence the macroscopic properties of IL, such as diffusion and ionic conductivity. In this respect, we have shown that correcting the Nernst-Einstein equation for the joint translation of ion-pairs considerably improves the accuracy of calculated ionic conductivities.  相似文献   

14.
Fortier NE  Fritz JS 《Talanta》1985,32(11):1047-1050
A quick, reliable method for the determination of Al(III) in the presence of other metal ions is presented. A Chromatographic system consisting of a low-capacity cation-exchange column, an eluent of diprotonated p-phenylenediamine, and a conductivity detector was used to measure the retention times for various cations. During the course of this work, it was found that Al(III) was eluted later than most bivalent metal ions but earlier than other tervalent metal ions. Therefore the concentration of eluent was adjusted so that an early sharp peak was obtained for Al(III) and the bivalent metal ions were eluted as a group. Through analysis of an NBS standard, as well as of solutions containing Al(III) and other metal ions, the method was shown to be precise, accurate and rapid for determination of Al(III) without interference from common bivalent metal ions.  相似文献   

15.
Two bola form Schiff bases derivatives with different substituted head groups have been designed and their interfacial phase behaviors and coordination with Cu(II) ions were investigated. It has been found that while one molecule with benzene headgroup formed dotted aggregations at the air/water interface, another with naphthyl moiety as head group formed crystalline multilayer films on water surface. When on the sub phase containing Cu(II) ions, both of the Schiff bases can coordinate with Cu(II) in situ in the spreading films with the obvious conformational change of alkyl chains. The in situ Cu(II)-coordinated films could be transferred onto solid substrates and subsequently characterized by various spectroscopic methods such as UV-vis and Fourier transform infrared spectra as well as the morphological character with atomic force microscopy measurement. In comparison, the ex situ coordination process at the liquid/solid interface have also been investigated by continuous spectral measurement. Depending on the different head groups, these amphiphiles showed different aggregation behaviors in the Langmuir-Blodgett films. Particularly, during the coordination process of ligand with Cu(II) ions in organized molecular films, great conformational change of the alkyl chains was observed. At the same time, a rational explanation about the head group effect on regulating the aggregation behaviors was discussed.  相似文献   

16.
Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2   总被引:1,自引:0,他引:1  
The surface behavior of solutions of the rhamnolipids, R1 and R2, were investigated in the absence and presence of an electrolyte (NaCl) through surface tension measurements and optical microscopy at pH 6.8. The NaCl concentrations studied are 0.05, 0.5 and 1 M. Electrolytes directly affect the carboxylate groups of the rhamnolipids. The solution/air interface has a net negative charge due to the dissociated carboxylate ions at pH 6.8 with strong repulsive electrostatic forces between the rhamnolipid molecules. This negative charge is shielded by the Na+ ions in the electrical double layer in the presence of NaCl, causing the formation of a close-packed monolayer, and a decrease in CMC, and surface tension values. The maximum compaction is observed at 0.5 M NaCl concentrations for R1 and R2 monolayers, with the R1 monolayer more compact than R2. The larger spaces left below the hydrophobic tails of R1 with respect to that of R2, due to the missing second rhamnosyl groups are thought to be responsible for the higher compaction. The rigidity of both R1 and R2 monolayers increases with the electrolyte concentration. The rigidity of the R1 monolayer is greater than that of R2 at all NaCl concentrations due to the lower hydrophilic character of R1. The variation of CMC values as a function of NaCl concentration obtained from the surface tension measurements and critical packing parameter (CPP) calculations show that spherical micelles, bilayer and rod like micelles are formed in the rhamnolipid solutions as a function of the NaCl concentration. The results of optical microscopy supported these aggregation states indicating lamellar nematic liquid crystal, cubic lamellar and hexagonal liquid crystal phases in R1 and R2 solutions depending on the NaCl concentration.  相似文献   

17.
The interactions between nonpolar surfaces coated with the nonionic surfactant hexaoxyethylene dodecyl ether C12E6 were investigated using two techniques and three different types of surfaces. As nonpolar surfaces, the air/water interface, silanated negatively charged glass, and thiolated uncharged gold surfaces were chosen. The interactions between the air/water interfaces were measured with a thin film pressure balance in terms of disjoining pressure as a function of film thickness. The interactions between the solid/liquid interfaces were determined using a bimorph surface force apparatus. The influence of the nature of the surface on the interaction forces was investigated at surfactant concentrations below and above the cmc. The adsorption of the nonionic surfactant on the uncharged thiolated surface does not, as expected, lead to any buildup of a surface charge. On the other hand, adsorption of C12E6 on the charged silanated glass and the charged air/water interface results in a lowering of the surface charge density. The reduction of the surface charge density on the silanated glass surfaces is rationalized by changes in the dielectric permittivity around the charged silanol groups. The reason for the surface charge observed at the air/water interface as well as its decrease with increasing surfactant concentration is discussed and a new mechanism for generation of OH- ions at this particular interface is proposed.  相似文献   

18.
Emulsification of oils at liquid/liquid interfaces is of fundamental importance across a range of applications, including detergency. Adsorption and partitioning of the anionic surface active ions at the interface between two immiscible solutions is known to cause predictable chaos at the transfer potential region of the surfactant. In this work, the phenomenon that leads to the chaotic behaviour shown by sodium dodecylbenzene sulfonate (SDBS) at the water/1,2‐dichloroethane interface is applied to commercial surfactants and aqueous/glyceryl trioleate interface. Electrochemical methods, electrocapillary curves, optical microscopy and conductivity measurements demonstrated that at 1.5 mm of SDBS, surfactants are adsorbed at the interface and assemble into micelles, leading to interfacial instability. As the concentration of the anionic surfactant was enhanced to 8 and 13.4 mm , the Marangoni effect and the interfacial emulsification became more prominent. The chaotic behaviour was found to be dependent on the surfactant concentration and the electrolytes present.  相似文献   

19.
采用界面吸附法制备了5种十八/杂多阴离子杂化LB膜ODA/HPA(HPA=PW12,PMo12,MPo12,PW6Mo6,PW9Mo3,P2Mo18).对5种本合物在空气/水界面上单分子膜的行为进行了研究,它们有较高的崩溃压46.0-48.0mN,m^-1,均能开稳定的单分子膜,用红外光谱,紫外光谱,小角X射线衍射(LXRD)和荧光光谱对LB膜的沉积特性与结构进行了鉴定,结果表明,制备的LB膜具有中心对称性,其层状结构由杂多阴离子的单层与表面活性剂双层交替组成。  相似文献   

20.
In this work, we investigate the production of highly oxidative species in solutions exposed to a self-pulsed corona discharge in air. We examine how the properties of the target solution (pH, conductivity) and the discharge power affect the discharge stability and the production of H2O2. Indigo carmine, a common organic dye, is used as an indicator of oxidative strength and in particular, hydroxyl radical (OH·) production. The observed rate of indigo oxidation in contact with the discharge far exceeds that predicted from reactions based on concentrations of species measured in the bulk solution. The generation of H2O2 and the oxidation of indigo carmine indicate a high concentration of highly oxidizing species such as OH· at the plasma–liquid interface. These results indicate that reactions at the air plasma–liquid interface play a dominant role in species oxidation during direct non-equilibrium atmospheric pressure plasma treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号