首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard molar enthalpies of formation of the 3-methyl-N-R-2-quinoxalinecarboxamide-1,4-dioxides (R = H, phenyl, 2-tolyl) in the gas phase were derived using the values for the enthalpies of combustion of the crystalline compounds, measured by static bomb combustion calorimetry, and for the enthalpies of sublimation, measured by Knudsen effusion, at T = 298.15 K. These values have also been used to calibrate a computational procedure that has been employed to estimate the gas-phase enthalpies of formation of the corresponding 3-methyl-N-R-2-quinoxalinecarboxamides and also to compute the first, second, and mean N-O bond dissociation enthalpies in the gas phase. It is found that the size of the substituent almost does not influence the computed N-O bond dissociation enthalpies; the maximum enthalpic difference is approximately 5 kJ.mol-1.  相似文献   

2.
Six O-phenyl ketoxime ethers, RR'C=NOPh 1-6, with RR' = diaryl, dialkyl, and arylalkyl, together with N-phenoxybenzimidic acid phenyl ether, PhO(Ph)C=NOPh, 7, have been shown to thermolyze at moderate temperatures with "clean" N-O bond homolyses to yield iminyl and phenoxyl radicals, RR'C=N(*) and PhO(*). Since 1-6 can be synthesized at room temperature, these compounds provide a new and potentially useful source of iminyls for syntheses. The iminyl from 7 undergoes a competition between beta-scission, to PhCN and PhO(*), and cyclization to an oxazole. Rate constants, 10(6) k/s(-1), at 90 degrees C for 1-6 range from 4.2 (RR' = 9-fluorenyl) to 180 (RR' = 9-bicyclononanyl), and that for 7 is 0.61. The estimated activation enthalpies for N-O bond scission are in satisfactory agreement with the results of DFT calculations of N-O bond dissociation enthalpies, BDEs, and represent the first thermochemical data for any reaction yielding iminyl radicals. The small range in k (N-O homolyses) is consistent with the known sigma structure of these radicals, and the variations in k and N-O BDEs with changes in RR' are rationalized in terms of iminyl radical stabilization by hyperconjugation: RR'C=N(*) <--> R(*)R'C[triple bond]N. Calculated N-H BDEs in the corresponding RR'C=NH are also presented.  相似文献   

3.
The standard (p 0=0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T-298.15 K, for 2,5-dimethylpyrazine (2,5-DMePz) and for the two dimethylpyrazine-N,N′-dioxide derivatives, 2,3-dimethylpyrazine-1,4-dioxide (2,3-DMePzDO) and 2,5-dimethylpyrazine-1,4-dioxide (2,5-DMePzDO), were derived from the measurements of standard massic energies of combustion, using a static bomb calorimeter, and from the standard molar enthalpies of vaporization or sublimation, measured by Calvet microcalorimetry. The mean values for the molar dissociation enthalpy of the nitrogen-oxygen bonds, 〈DH m0〉(N-O), were derived for both N,N′-dioxide compounds. These values are discussed in terms of the molecular structure of the two N,N′-dioxide derivatives and compared with 〈DH m0〉(N-O) values previously obtained for other N-oxide derivatives.  相似文献   

4.
The standard enthalpy of formation of the 2-amino-3-quinoxalinecarbonitrile-1,4-dioxide compound in the gas-phase was derived from the enthalpies of combustion of the crystalline solid measured by static bomb combustion calorimetry and its enthalpy of sublimation determined by Knudsen mass-loss effusion at T= 298.15 K. This value is (383.8 +/- 5.4) kJ mol(-1) and was subsequently combined with the experimental gas-phase enthalpy of formation of atomic oxygen and with the computed gas-phase enthalpy of formation of 2-amino-3-quinoxalinecarbonitrile, (382.0 +/- 6.3) kJ mol(-1), in order to estimate the mean (N-O) bond dissociation enthalpy in the gas-phase of 2-amino-3-quinoxalinecarbonitrile-1,4-dioxide. The result obtained is (248.3 +/- 8.3) kJ mol(-1), which is in excellent agreement with the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computed value.  相似文献   

5.
Kinetic data for solvolyses of 28 acid chlorides in 97% w/w trifluoroethanol (TFE)-water spanning over 10 (9) in rate constant at 25 degrees C are obtained directly or by short extrapolation from published values. G3 calculations of the energy required for cation formation in the gas phase are validated from proton affinities and from other experimental data. G3 calculations of heterolytic bond dissociation enthalpies (HBDEs) for formation of cations from acid chlorides in the gas phase show the following trends when compared with the solvolysis rate constants: (i) electron-rich sulfonyl chlorides and most carboxylic acid chlorides, including thione derivatives, give a satisfactory linear correlation with a significant negative slope; (ii) most sulfonyl chlorides and some chloroformates and thio derivatives have higher HBDEs and fit another correlation with a small, negative slope. A significant deviation is observed for the acyl series (RCOCl), for which both solvolysis rates and HBDEs increase in the order R = Bu ( t ) < Pr ( i ) < Et < Me. The deviation may be explained either by a prior hydration mechanism or preferably by electrostatic effects on the formation of small cations. The above results of structural effects support independent evidence from solvent effects that cationic ionization reaction pathways (with nucleophilic solvent assistance or S N2 character) are involved in the solvolyses of acid chlorides.  相似文献   

6.
Thermodynamic properties of 3- and 4-phenoxyphenol have been determined by using a combination of calorimetric and effusion techniques as well as by high-level ab initio molecular orbital calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation in the condensed and gas states, Δ(f)H(m)°(cr or l) and Δ(f)H(m)°(g), at T = 298.15 K, of 3- and 4-phenoxyphenol were derived from their energies of combustion in oxygen, measured by a static bomb calorimeter, and from the enthalpies of vaporization or sublimation derived respectively by Calvet microcalorimetry for the 3-phenoxyphenol and by Knudsen effusion technique for the 4-phenoxyphenol. The theoretically estimated gas-phase enthalpies of formation were calculated from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. Furthermore, this composite approach was also used to obtain information about the gas-phase acidities, gas-phase basicities, proton and electron affinities, adiabatic ionization enthalpies, and, finally, O?H bond dissociation enthalpies. The good agreement between the G3MP2B3-derived values and the experimental gas-phase enthalpies of formation for the 3- and 4-phenoxyphenol gives confidence to the estimate concerning the 2-phenoxyphenol isomer, which was not experimentally studied, and to the estimates concerning the radical and the anion. Additionally, the experimental values of gas-phase enthalpies of formation were also compared with estimates based on the empirical scheme developed by Cox.  相似文献   

7.
A static bomb calorimeter has been used to measure the standard molar energy of combustion, in oxygen, at T = 298.15 K, of a commercial sample of cytosine. From this energy, the standard (p degrees = 0.1 MPa) molar enthalpy of formation in the crystalline state was derived as -(221.9 +/- 1.7) kJ.mol(-1). This value confirms one experimental value already published in the literature but differs from another literature value by 13.5 kJ.mol(-1). Using the present standard molar enthalpy of formation in the condensed phase and the enthalpy of sublimation due to Burkinshaw and Mortimer [J. Chem. Soc., Dalton Trans. 1984, 75], (155.0 +/- 3.0) kJ.mol(-1), results in a value for the gas-phase standard molar enthalpy of formation for cytosine of -66.9 kJ.mol(-1). A similar value, -65.1 kJ.mol(-1), has been estimated after G3MP2B3 calculations combined with the reaction of atomization on three different tautomers of cytosine. In agreement with experimental evidence, the hydroxy-amino tautomer is the most stable form of cytosine in the gas phase. The enthalpies of formation of the other two tautomers were also estimated as -60.7 kJ.mol(-1) and -57.2 kJ.mol(-1) for the oxo-amino and oxo-imino tautomers, respectively. The same composite approach was also used to compute other thermochemical data, which is difficult to be measured experimentally, such as C-H, N-H, and O-H bond dissociation enthalpies, gas-phase acidities, and ionization enthalpies.  相似文献   

8.
The standard (p° = 0.1MPa) molar enthalpies of formation for 2-, 3- and 4-cyanophenol in the gaseous phase were derived from the standard molar enthalpies of combustion in oxygen at T = 298.15 K, measured by static bomb combustion calorimetry, and the standard molar enthalpies of sublimation at 298.15 K, measured by Calvet microcalorimetry: 2-cyanophenol, (32.8 ± 2.1) kJ-mol–1; 3-cyanophenol, (37.8 ± 2.2) kJ-mol–1; 4-cyanophenol, (35.1 ± 2.5)-kJ-mol–1. Ab initio geometry optimizations of the three cyanophenols and respective phenoxyl radicals and phenoxide anions were performed using the 6-31G* basis sets. Single-point MP2 and DFT energy calculations allowed the estimation of the enthalpies of formation in the gaseous phase, the O—H bond dissociation energies, and the gas-phase acidities of the three cyanophenols. The theoretical results are generally in good agreement with the experimental findings.  相似文献   

9.
The enthalpies of formation and bond dissociation energies, D(ROO-H), D(RO-OH), D(RO-O), D(R-O 2) and D(R-OOH) of alkyl hydroperoxides, ROOH, alkyl peroxy, RO, and alkoxide radicals, RO, have been computed at CBS-QB3 and APNO levels of theory via isodesmic and atomization procedures for R = methyl, ethyl, n-propyl and isopropyl and n-butyl, tert-butyl, isobutyl and sec-butyl. We show that D(ROO-H) approximately 357, D(RO-OH) approximately 190 and D(RO-O) approximately 263 kJ mol (-1) for all R, whereas both D(R-OO) and D(R-OOH) strengthen with increasing methyl substitution at the alpha-carbon but remain constant with increasing carbon chain length. We recommend a new set of group additivity contributions for the estimation of enthalpies of formation and bond energies.  相似文献   

10.
Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.3 +/- 1.3 kJ x mol(-1) and 120.0 +/- 2.9 kJ x mol(-1), respectively. Several different computational approaches and different working reactions were used to estimate the gas-phase enthalpies of formation for indole and indoline. The computational approaches support the experimental results reported. The calculations were further extended to the determination of other properties such as bond dissociation enthalpies, gas-phase acidities, proton and electron affinities and ionization energies. The agreement between theoretical and experimental data for indole is very good supporting the data calculated for indoline.  相似文献   

11.
The O-H bond dissociation enthalpies (BDEs) of 13 oximes, RR'C=NOH, having R and/or R' = H, alkyl, and aryl are reported. Experimental anchor points used to validate the results of theoretical calculations include (1) the O-H BDEs of (t-Bu)2C=NOH, t-Bu(i-Pr)C=NOH, and t-Bu(1-Ad)C=NOH determined earlier from the heat released in the reaction of (t-Bu)2C=NO* with (PhNH)2 in benzene and EPR spectroscopy (Mahoney, L. R.; Mendenhall, G. D.; Ingold, K. U. J. Am. Chem. Soc. 1973, 95, 8610), all of which were decreased by 1.7 kcal/mol to reflect a revision to the heat of formation of (E)-azobenzene (which has significant ramifications for other BDEs) and to correct for the heat of hydrogen bonding of (t-Bu)2C=NOH (alphaH2 = 0.43 measured in this work) to benzene, and (2) the measured rates of thermal decomposition of six RR'C=NOCH2Ph at 423 or 443 K, which were used to derive O-H BDEs for the corresponding RR'C=NOH. Claims (Bordwell, F. G.; Ji, G. Z. J. Org. Chem. 1992, 57, 3019; Bordwell, F. G.; Zhang, S. J. Am. Chem. Soc. 1995, 117, 4858; and Bordwell, F. G.; Liu, W.-Z. J. Am. Chem. Soc. 1996, 118, 10819) that the O-H BDEs in mono- and diaryloximes are significantly lower than those for alkyloximes due to delocalization of the unpaired electron into the aromatic ring have always been inconsistent with the known structures of iminoxyl radicals as are the purported perpendicular structures, i.e., phi(Calpha-C=N-O*) = 90 degrees, for sterically hindered dialkyl iminoxyl radicals. The present results confirm the 1973 conclusion that simple steric effects, not electron delocalization or dramatic geometric changes, are responsible for the rather small differences in oxime O-H BDEs.  相似文献   

12.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloroaniline were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of vaporization or sublimation of the three isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the three isomers of chloroaniline, in the gaseous phase, at T = 298.15 K, as 53.4 +/- 3.1 kJ.mol(-1) for 2-chloroaniline, 53.0 +/- 2.8 kJ.mol(-1) for 3-chloroaniline, and 59.7 +/- 2.3 kJ.mol(-1) for 4-chloroaniline. These values, which correct previously published data, were used to test the computational methodologies used. Therewith, gas-phase acidities, proton affinities, electron donor capacities, and N-H bond dissociation enthalpies were calculated and found to compare well with available experimental data for these parameters.  相似文献   

13.
Based on the experimental results and the published data, the enthalpies of formation of ethane and propane nitro derivatives were obtained for both the standard state and gas phase. The bond dissociation energies of the ethane and propane nitro derivatives were calculated using the enthalpies of atomization and the energies of nonvalent interactions of nitro groups. The calculated values were compared with the kinetic data on thermal decomposition. The bond dissociation energies in radicals of the ethane and propane nitro derivatives were also calculated using the enthalpies of atomization and the energies of nonvalent interactions of nitro groups. Regularities of changes in the bond dissociation energies of the ethane and propane nitro derivatives and their radicals were established.  相似文献   

14.
The enthalpies of formation of oxygen-containing adamantane derivatives were calculated using the semiempirical quantum-chemical PM3, MINDO, AM1, and MNDO methods implemented in the MOPAC package. The calculated and experimental values were compared. The best correlation was obtained for AM1 calculations. This method was therefore used to calculate the enthalpies of formation of 20 oxygen-containing adamantane derivatives.  相似文献   

15.
Weak pi hydrogen-bonded solute/solvent complexes are studied with ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature-dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute/solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen-bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory.  相似文献   

16.
Metal-η5-cyclopentadienyl (M-Cp) and metal-η5-pyrrolyl (M-pyr) bond dissociation enthalpies in group 4 complexes were determined from DFT/B3LYP calculations with a VTZP basis set. Thermochemical cycles involving calculated enthalpies of ligand exchange reactions and experimental values of ligand electron affinities and M-Cl bond dissociation enthalpies were applied to [M(η5-X)Cl3] piano stool complexes (M = Ti, Zr, Hf; X = pyr, Cp), allowing a comparative study of those metal-ligand bond strengths. The results indicate that both ligands establish weaker bonds with Ti than with the heavier elements, Zr and Hf. Very similar bond dissociation enthalpies were obtained for pyrrolyl and cyclopentadienyl (within 1 kcal mol−1), suggesting that the well known difference in reactivity between those families of complexes should derive from kinetic rather than thermodynamic causes.  相似文献   

17.
The reaction of ebselen and its derivatives (1-7) with peroxynitrite anion (ONOO(-); PN) has been studied in gas phase and in aqueous, dichloromethane, benzene, and cyclohexane solutions using B3LYP/6-311+G(d,p)//B3LYP/6-311G(d,p) and PCM-B3LYP/6-311+G(d,p)//B3LYP/6-311G(d,p) approaches, respectively. It was shown that the reaction of 2 (R=H) with PN proceeds via 2 + PN --> 2-PN --> 2-TS1 (O-O activation) --> 2-O(NO(2)(-)()) --> 2-SeO + NO(2)(-) pathway with a rate-determining barrier of 25.3 (14.8) kcal/mol at the NO(2)(-) dissociation step (numbers presented without parentheses are enthalpies, and those in parentheses are Gibbs free energies). The NO(3)(-) formation process, starting from the complex 2-O(NO(2)(-)()), requires by (7.9) kcal/mol more energy than the NO(2)(-) dissociation process and is unlikely to compete with the latter. Thus, in the gas phase, the peroxynitrite --> nitrate isomerization catalyzed by complex 2 is unlikely to occur. It is shown that the NO(3)(-) formation process is slightly more favorably than the NO(2)(-) dissociation process for complex 4, with a strongest electron-withdrawing ligand R=CF(3). Therefore, complex 4 (as well as complex 6 with R=OH) is predicted to be a good catalyst for peroxynitrite <--> nitrite isomerization in the gas phase. Solvent effects (a) change the rate-determining step of the reaction 2 + PN from NO(2)(-) dissociation in the gas phase to O-O activation, which occurs with barriers of (13.9), (8.4), (8.4), and (8.2) kcal/mol in water, dichloromethane, benzene, and cyclohexane, respectively, and (b) significantly reduce the NO(2)(-) dissociation energy, while only slightly destabilizing the NO(3)(-) formation barrier, and make the peroxynitrite <--> nitrate isomerization process practically impossible, even for complex 4.  相似文献   

18.
The standard molar enthalpies of formation, in the crystalline phase, of three halogenated 1-phenylpyrrole derivatives, namely 1-(4-fluorophenyl)pyrrole, 1-(4-chlorophenyl)pyrrole, and 1-(4-iodophenyl)pyrrole were derived from the respective enthalpies of combustion, measured by rotating-bomb combustion calorimetry. Their enthalpies of sublimation, at T = 298.15 K, were obtained from the Knudsen mass-loss effusion technique. From these two experimental parameters, the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, of 1-(4-fluorophenyl)pyrrole, 1-(4-chlorophenyl)pyrrole, and 1-(4-iodophenyl)pyrrole were calculated, respectively, as (26.2 ± 2.4) kJ · mol−1, (196.2 ± 2.5) kJ · mol−1, and (311.5 ± 2.4) kJ · mol−1.The gas-phase enthalpies of formation of both fluorine and chlorine compounds were estimated by G3(MP2)//B3LYP computations. For the iodine compound, the B3LYP/6-311G(d):ECP46MDF approach was employed. Additionally, the DFT calculations were extended to estimate the enthalpy of formation of the bromine derivative, 1-(4-bromophenyl)pyrrole, performed at the B3LYP/6-311G(d) level of theory.  相似文献   

19.
The enthalpies of formation of nitromethane derivatives were obtained on the basis of experimental and literature data. The procedure for the calculation of the bond dissociation energies in nitromethanes from the atomization enthalpies and energies of nonvalent interactions of nitro groups was proposed. The calculated values were compared with the data on the thermal decomposition kinetics. The atomization enthalpies and energies of nonvalent interactions of nitro groups were also used for the calculation of the bond dissociation energies in radicals.  相似文献   

20.
The standard (po = 0.1 MPa) molar enthalpies of formation in the condensed phase of seven isomers of fluoromethylaniline were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g) and HF.10H2O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies of vaporization or sublimation of these compounds, also at T = 298.15 K, were determined using Calvet microcalorimetry, while the enthalpies of fusion of the solid compounds were determined by differential scanning calorimetry. The standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived from the former two experimental quantities. G3MP2//B3LYP calculations were performed for all possible fluoromethylanilines allowing the estimation of data for the isomers that were not studied experimentally. The Cox scheme was applied with two different approaches for the estimation of the standard molar enthalpies of formation of all the isomers studied, and this led to the conclusion that the literature values for the enthalpies of formation of the meta and para isomers of methylaniline seem to be not reliable. Further G3MP2//B3LYPs calculations on the methylaniline isomers yielded new values for the standard molar enthalpies of formation of the isomers of methylaniline, which have been tested under the Cox scheme, resulting in better estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号