首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies.  相似文献   

2.
The paper discusses the optimal control for the chaos synchronization of Rössler systems with complete uncertain parameters during finite and infinite time intervals. Based on the Liapunov–Bellman technique, optimal control laws are derived from the conditions that ensure asymptotic stability of the error dynamical system and minimizes the cost transfer of this system from arbitrary state to its equilibrium state. The derived control laws make the states of two identical Rössler systems asymptotically synchronized. Some special cases are introduced. Important numerical simulation is included to show the effectiveness of the optimal synchronization technique.  相似文献   

3.
A new general strategy to achieve chaos synchronization by variable strength linear coupling without another active control is proposed. They give the criteria of chaos synchronization for two identical chaotic systems and two different chaotic dynamic systems with variable strength linear coupling. In this method, the time derivative of Lyapunov function in series form is firstly used. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated examples.  相似文献   

4.
Real systems evolving towards complex state encounter chaotic behavior. This behavior is very important in chemical processes or in biological structures because it defines the direction of the evolution of the system. From this point of view, the capability of deliberate control of these phenomena has a great practical impact despite the fact that it is very difficult; this is the reason why theoretical models are useful in these situations. In order to obtain chaos control in chemical reactions, the analysis of the dynamics of Willamowski–Rössler system involving the synchronization of two Minimal Willamowski–Rössler (MWR) systems based on the adaptive feedback method of control is presented in this work. As opposed to previous studies where in order to obtain synchronization 3 controllers were used, implying from a practical point of view the control of the concentrations of three chemical species, in this study we showed that the use of just one is sufficient which in practice is important as controlling the concentration of a single chemical species would be much easier. We also showed that the transient time until synchronization depends on initial conditions of two systems, the strength and number of the controllers and we attempted to identify the best conditions for a practical synchronization.  相似文献   

5.
Based on the Lyapunov stabilization theory and matrix measure, this paper addresses the strategies of speed feedback control of chaotic system to the unsteadily equilibrium points, illustrated by a unified chaotic system and Rössler chaotic system. It is proved that the infimum of speed feedback control coefficient is less than that of displacement feedback control coefficient.  相似文献   

6.
In this paper, we consider the synchronization problem via nonlinear observer design. A new exponential polynomial observer for a class of nonlinear oscillators is proposed, which is robust against output noises. A sufficient condition for synchronization is derived analytically with the help of Lyapunov stability theory. The proposed technique has been applied to synchronize chaotic systems (Rikitake and Rössler systems) by means of numerical simulation.  相似文献   

7.
This paper focuses on the problem of impulsive synchronization of T–S fuzzy systems. A new synchronization criterion is derived for T–S fuzzy systems by utilizing the concept of average impulsive interval. The proposed impulsive control scheme has a simple control structure, and is theoretically and numerically proved to be less conservative than some existing results. The method is also illustrated by applying to Lorenz system, Rössler’s system as well as permanent magnet synchronous motors system.  相似文献   

8.
By coupling counter-rotating coupled nonlinear oscillators, we observe a “mixed” synchronization between the different dynamical variables of the same system. The phenomenon of amplitude death is also observed. Results for coupled systems with co-rotating coupled oscillators are also presented for a detailed comparison. Results for Landau–Stuart and Rössler oscillators are presented.  相似文献   

9.
Based on the Lyapunov stabilization theory and matrix measure, this paper proposes some simple generic criterions of global chaos synchronization between two coupled time-varying chaotic systems from a unidirectional linear error feedback coupling approach. These simple criterions are applicable to some typical chaotic systems with different types of nonlinearity, such as the original Chua’s circuit and the Rössler chaotic system. The coupling parameters are determined according to the new criterion so as to ensure the coupled systems’ global chaos synchronization.  相似文献   

10.
The present article aims to study the projective synchronization between two identical and non?identical time?delayed chaotic systems with fully unknown parameters. Here the asymptotical and global synchronization are achieved by means of adaptive control approach based on Lyapunov–Krasovskii functional theory. The proposed technique is successfully applied to investigate the projective synchronization for the pairs of time?delayed chaotic systems amongst advanced Lorenz system as drive system with multiple delay Rössler system and time?delayed Chua's oscillator as response system. An adaptive controller and parameter update laws for unknown parameters are designed so that the drive system is controlled to be the response system. Numerical simulation results, depicted graphically, are carried out using Runge–Kutta Method for delay?differential equations, showing that the design of controller and the adaptive parameter laws are very effective and reliable and can be applied for synchronization of time?delayed chaotic systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Combining Takagi–Sugeno (TS) fuzzy model and impulsive control, a new approach to control chaotic systems, namely fuzzy impulsive control, is proposed in this paper. The rigorous stability analysis of the proposed method is given. The effectiveness of the approach is tested on Chua’s circuit, Chen’s system and Rössler’s system.  相似文献   

12.
Exact Lyapunov dimension of attractors of many classical chaotic systems (such as Lorenz, Henon, and Chirikov systems) is obtained. While exact Lyapunov dimension for Rössler system is not known, Leonov formulated the following conjecture: Lyapunov dimension of Rössler attractor is equal to local Lyapunov dimension in one of its stationary points. In the present work Leonov’s conjecture on Lyapunov dimension of various Rössler systems with standard parameters is checked numerically.  相似文献   

13.
A new type of linear observer based projective, projective anticipating and projective lag synchronization of time-delayed Rössler system is studied. Along with this, the approach arbitrarily scales a drive system attractor and hence a similar chaotic attractor of any desired scale can be realized with the help of a synchronizing scaling factor. A scalar synchronizing output is considered where the output equation includes both the delay and non-delay terms of the nonlinear function. The condition for synchronization is derived analytically and the values of the coupling parameters are obtained. Analytical results are verified through numerical investigation and the effect of modulated time delay in the method is discussed. An important aspect of this method is that it does not require the computation of conditional Lyapunov exponents for the verification of synchronization.  相似文献   

14.
By constructing the parametric error vectors between drive system and response system, a parametric synchronization scheme of chaotic system which is different from all other schemes is proposed in this paper. Controller of the scheme is designed. The proposed scheme and controller not only realize the synchronization of the state vectors, but also synchronize the unknown response parameters to the given drive parameter as time goes to infinity. That is to say, to achieving the synchronization, we have no need to know the parameters of response system when the parameters of drive system are given. The scheme and controller are successfully applied to the Rössler and the hyperchaotic Rössler systems, corresponding numerical simulations are presented to show the validity of the proposed synchronization scheme and effectiveness of the controller.  相似文献   

15.
In this paper, the function cascade synchronization scheme is proposed to investigate the discrete-time hyperchaotic systems. By choosing some different error functions and with the aid of symbolic–numeric computation, the proposed scheme is applied to achieve the function cascade synchronization for two discrete-time hyperchaotic systems: the generalized Hénon map and the discrete-time Rössler system, respectively. Numerical simulations are used to verify the effectiveness and feasibility of the proposed technique.  相似文献   

16.
Based on the Lyapunov stability theorem, a new type of chaos synchronization, general hybrid projective complete dislocated synchronization (GHPCDS), is proposed under the framework of drive-response systems. The difference between the GHPCDS and complete synchronization is that every state variable of drive system does not equal the corresponding state variable, but equal other ones of response system while evolving in time. The GHPCDS includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. As examples, the Lorenz chaotic system, Rössler chaotic system, hyperchaotic Chen system and hyperchaotic Lü system are discussed. Numerical simulations are given to show the effectiveness of these methods.  相似文献   

17.
This paper mainly investigates adaptive generalized function projective synchronization of two different uncertain chaotic systems, which is a further extension of many existing projection synchronization schemes, such as modified projection synchronization, function projective synchronization and so on. On the basis of Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed, and some parameter update laws for estimating the unknown parameters of the systems are also gained. This technique is applied to achieve synchronization between Lorenz and Rössler chaotic systems. The numerical simulations demonstrate the validity and feasibility of the proposed method.  相似文献   

18.
This work presents a direct approach to design stabilizing controller for nonlinear systems with delay based on a special matrix structure and proves the validity of the approach according to Lyapunov–Krasovskii stable theorem and Linear Matrix Inequality—LMI. Control Lorenz system and synchronizing Rössler system with delay are taken as examples to explain the approach. Numerical simulations confirm the effectiveness of the approach proposed.  相似文献   

19.
In this paper, we investigate the synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control. Using a combination of Riccati differential equation approach, Lyapunov-Krasovskii functional, inequality techniques, some sufficient conditions for exponentially stability of the error system are formulated in form of a solution to the standard Riccati differential equation. The designed controller ensures that the synchronization of non-autonomous chaotic systems are proposed via delayed feedback control and intermittent linear state delayed feedback control. Numerical simulations are presented to illustrate the effectiveness of these synchronization criteria.  相似文献   

20.
A note on phase synchronization in coupled chaotic fractional order systems   总被引:1,自引:0,他引:1  
The dynamic behaviors of fractional order systems have received increasing attention in recent years. This paper addresses the reliable phase synchronization problem between two coupled chaotic fractional order systems. An active nonlinear feedback control scheme is constructed to achieve phase synchronization between two coupled chaotic fractional order systems. We investigated the necessary conditions for fractional order Lorenz, Lü and Rössler systems to exhibit chaotic attractor similar to their integer order counterpart. Then, based on the stability results of fractional order systems, sufficient conditions for phase synchronization of the fractional models of Lorenz, Lü and Rössler systems are derived. The synchronization scheme that is simple and global enables synchronization of fractional order chaotic systems to be achieved without the computation of the conditional Lyapunov exponents. Numerical simulations are performed to assess the performance of the presented analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号