首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高锰酸盐、钼酸盐、锡酸盐转化液分别对AZ91D镁合金进行表面化学转化,得到三种不同的化学转化膜。分别通过SEM、EDS和全浸试验研究不同转化膜的表面微观形貌、成分和腐蚀率,通过划格法和中性盐雾试验法研究转化膜外部有机涂层的附着性能和耐蚀性能。结果表明,高锰酸盐和钼酸盐转化膜表面具有大量微细裂纹,锡酸盐转化膜表面呈鱼鳞状,均为后续涂装提供了具有一定粗糙度的表面。锡酸盐转化膜的耐蚀性最好,高锰酸盐转化后并涂层的附着力和耐蚀性能最好。  相似文献   

2.
用载波钝化方法控制AZ91D镁合金锡酸盐转化膜成膜过程,用扫描电镜(SEM)观察该转化膜的表面形貌,用极化曲线和电化学阻抗谱研究载波钝化对该转化膜耐蚀性能的影响。结果表明, 载波钝化使AZ91D镁合金表面生成一层颗粒直径略大于传统浸泡处理的锡酸盐转化膜,其耐蚀性能显著提高。  相似文献   

3.
Chromate conversion coatings can be successfully used for corrosion protection of magnesium alloys. However, the environmental laws have imposed severe restrictions on chromate use in many countries. In this study, a novel protective environmental‐functionally gradient coating was formed on AZ91D magnesium alloy by non‐chromate surface treatments, which consisted of pre‐etching followed by cerium‐based chemical conversion before applying the sol–gel CeO2 film. It was determined by the analysis of X‐ray diffraction that the gradient coating was mainly composed of CeO2. The calculation, based on the Scherrer formula, further revealed the formation of nanocrystalline structure in the coating. Scanning electron microscopy (SEM) observations showed that the coating was homogeneous and compact, no obvious cracked structure occurred. According to the immersion tests, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this novel environmental‐functionally gradient coating.  相似文献   

4.
研究了酸洗以及酸洗+碱洗前处理工艺对AZ91D镁合金无铬、无裂纹、低能耗钛/锆转化膜耐蚀性能的影响。结果表明,单独的酸洗前处理使得AZ91D镁合金表面的α相优先溶解,合金表面粗糙度增加,不利于钛/锆转化膜耐蚀性能的增加。合理地利用酸洗+碱洗调整AZ91D镁合金表面化学状态能够有效提高钛/锆化学转化膜的耐蚀性能。  相似文献   

5.
In this paper, the formation and corrosion resistance of the phytic acid conversion coatings on Mg, Al, and AZ91D magnesium alloy were contrastively investigated using scanning electronic microscopy (SEM), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR), electronic probe microscopic analyzer (EPMA), electronic balance, and electrochemical methods. The influence of phytic acid conversion coating as a middle layer on the properties of the paint on magnesium alloys was also investigated. The results show that the formation process of the conversion coatings is evidently influenced by the compositions of the substrate. The coating on pure aluminum is thinner and compacter than that on pure magnesium and the coating formed on α phase in AZ91D magnesium alloy is thinner but denser than that on β phase. The phytic acid conversion coatings formed on Mg, Al, and AZ91D magnesium alloy can all increase their corrosion resistance. The active functional groups of hydroxyl and phosphate radical are rich in the conversion coatings, which can improve the bonding between the organic paint and magnesium alloy and then improve their corrosion resistance.  相似文献   

6.
A chemical conversion treatment and an electroless nickel plating were applied to AZ91D alloy to improve its corrosion resistance. By conversion treatment in alkaline stannate solution, the corrosion resistance of the alloy was improved to some extent as verified by immersion test and potentiodynamic polarization test in 3.5 wt.% NaCl solution at pH 7.0. X-ray diffraction patterns of the stannate treated AZ91D alloy showed the presence of MgSnO3 · H2O, and SEM images indicated a porous structure, which provided advantage for the adsorption during sensitisation treatment prior to electroless nickel plating. A nickel coating with high phosphorus content was successfully deposited on the chemical conversion coating pre-applied to AZ91D alloy. The presence of the conversion coating between the nickel coating and the substrate reduced the potential difference between them and enhanced the corrosion resistance of the alloy. An obvious passivation occurred for the nickel coating during anodic polarization in 3.5 wt.% NaCl solution.  相似文献   

7.
In this paper, a protective coating scheme was applied for the corrosion protection of AZ91D magnesium alloy. Electroless Ni coating (EN coating) as bottom layer, electrodeposited Ni coating (ENN coating), and silane‐based coating (ENS coating) as top layer, respectively, were successfully prepared on AZ91D magnesium alloy by combination techniques. Scanning electron microscopy and X‐ray diffraction were employed to investigate the surface and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in neutral 3.5 wt% NaCl solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The corrosion testing showed that the three kinds of coatings all could provide corrosion protection for AZ91D magnesium alloy to a certain extent, and the corrosion resistance of ENN and ENS was superior to EN. In order to further study the corrosion protection properties of ENN and ENS, a comparative investigation on the evolution of EIS of ENN and ENS was carried out by dint of immersion test in neutral 3.5 wt% NaCl solution. The results indicated that, compared with ENN, the ENS could provide longer corrosion protection for AZ91D magnesium alloy. It is significant to determine the barrier effect of each coating, which could provide reference for industry applications.  相似文献   

8.
目的利用锡酸盐转化膜中间层避免化学镀镍镀层与金属基体的直接接触,降低其产生原电池腐蚀的趋势,提高镁合金化学镀镍层的耐蚀性及稳定性。方法采用锡酸盐化学转化膜技术在AZ31镁合金表面制备锡酸盐转化膜层,然后通过直接化学镀镍技术在该膜层上沉积Ni-P镀层。利用SEM、EDS、浸泡析氢、电化学测试等手段,研究了复合镀层的显微结构、相组成、耐蚀性。结果锡酸盐转化膜由细小均匀的球形颗粒堆积而成,颗粒之间存在空隙,为直接化学镀镍时镍磷的初始沉积提供了可能。化学转化膜表面沉积的化学镀镍层均匀致密,形成典型的胞状结构。基体-化学转化膜-化学镀Ni-P合金层三者之间的结合良好,保证了复合镀层优良的耐蚀性能。结论化学镀Ni-P层能够在不经过钯活化处理的条件下直接在锡酸盐转化膜上沉积,锡酸盐转化膜中间层避免了Ni-P阴极性镀层与阳极性镁基体的直接接触,降低了Ni-P镀层局部缺陷对整体防护效果的影响,提高了镀层的耐蚀性及耐久性。  相似文献   

9.
对AZ31镁合金表面采取锡酸盐化学转化处理,采用对比试验测定了转化膜在质量分数3.5%NaCl溶液中的腐蚀率,利用扫描电镜(SEM)及能谱(EDS)观察分析了转化膜的形貌和元素含量.结果表明:经锡酸盐转化后的AZ31镁合金的腐蚀率为2.65mm/a,未经转化的AZ31镁合金的腐蚀率为30.36mm/a,耐蚀性有明显提高;锡酸盐转化液pH值在3.5~12范围时对AZ31镁合金均形成了转化膜保护层.  相似文献   

10.
采用化学转化法在镁合金表面制备锡酸盐转化膜。采用硫酸铜点滴实验、电化学交流阻抗(EIS)测试和Tafel曲线、扫描电子显微镜(SEM)测试和X射线衍射分析(XRD)等方法检测膜层的性能。研究了几种有机添加剂(Tartaric acid、Citric acid、Phytic acid、EDTA、Sodium dodecyl sulfate)对膜层耐蚀性的影响,结果表明溶液中添加SDS后,转化膜的硫酸铜点滴时间由35 s提高到了86 s,明显提高转化膜的耐腐蚀性能,膜层的形貌为呈"颗粒"状紧凑的连接到一起,该膜层的主要成分为Mg Sn(OH)6、Mg(OH)2。  相似文献   

11.
以硫酸镍为主盐的AZ91D镁合金化学镀镍研究   总被引:1,自引:0,他引:1  
研究了以硫酸镍为主盐的AZ91D镁合金化学镀镍.采用无铬前处理在AZ91D镁合金表面形成高锰酸盐和磷酸盐化学转化膜,用SEM、EDX、XRD和极化曲线等方法研究化学转化膜和化学镀镍层的形貌、组成及在3.5%的NaCl溶液中的耐腐蚀性能.结果表明,在高锰酸盐转化膜表面形成的化学镀镍层呈胞状,较致密,有微裂纹;在磷酸盐转化膜上形成的化学镀镍层也呈胞状,晶胞大小不均匀,没有微裂纹.镀层厚度均匀,致密,无孔隙.在3.5%的NaCl溶液中的极化曲线表明化学转化膜对镁合金基体的耐腐蚀性能提高不大,经高锰酸盐和磷酸盐前处理的化学镀镍层腐蚀电位分别为-0.48V_(SCE)和-1.12 V_(SCE).以硫酸镍为主盐的经磷酸盐前处理的化学镀镍层较好地提高了镁合金的耐腐蚀性能.  相似文献   

12.
The formation process of stannate conversion coating (CC) on AZ91D alloy was in-situ investigated by electrochemical noise (EN). The wavelet transform, as well as noise resistance (Rn) and spectral noise resistance (Rsn), had been employed to analyze the EN data. It was revealed that there exist two distinguishing stages of stannate CC formation process on AZ91D alloy, including an incubation stage companying with the nucleation and nuclei dissolution process, a periodical growth stage involving hemispherical particles growth and coating dissolution process. Furthermore, the results demonstrated that EN was a powerful tool to investigate rapid electrochemical process, such as CC formation process.  相似文献   

13.
An electroless Ni-Sn-P coating was deposited on AZ91D magnesium alloy in an alkaline-citrate-based bath where nickel sulphate and sodium stannate were used as metal ion sources and sodium hypophosphite was used as a reducing agent. The phase structure of the coating was amorphous. SEM and attached EDS observation revealed the presence of dense and uniform nodules in the ternary coating and the content of tin was 2.48wt.%. Both the electrochemical analysis and the immersion test in 10% HCl solution proved that the ternary Ni-Sn-P coating exhibited better corrosion resistance than the Ni-P coating in protecting the magnesium alloy substrate.  相似文献   

14.
In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were added to fabricate Ni–P–TiN composite coating by electrodeposition. The surface, cross-section morphology and composition were examined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicate that TiN nanoparticles were doped successfully in the Ni–P matrix after a series of complex pretreatments including activation, zinc immersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion between magnesium alloy and composite coating. The microhardness of the Ni–P coating increases dramatically by adding TiN nanoparticles and subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni–P–TiN composite coating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni–P coating in short immersion time. However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.  相似文献   

15.
室温下,在AZ91 镁合金表面制备Ce-Mn 复合转化膜,通过单因素实验研究了Ce(NO3 )3 浓度和KMnO4 浓度对转化膜耐腐蚀性能的影响,确定了较佳的浓度配比。分析了转化膜的结构及组成,通过交流阻抗谱,研究了Ce-Mn 对基体镁合金的防护机制。结果表明:Ce-Mn 转化膜为非晶态物相结构,膜层主要由铈、锰和少量镁的氧化物或氢氧化物组成,Ce-Mn 转化膜可对镁合金起到较好的防护作用。  相似文献   

16.
The oxalate coating formed on AZ91D magnesium alloy by chemical conversion treatment methods in oxalate salt solutions was investigated. The surface morphologies and chemical composition of coating were examined using scanning electron microscopy (SEM) equipped with energy dispersive analysis of X-ray (EDX). Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves and salt spray tests were employed to evaluate corrosion protection of the coating to substrate in 5% NaCl solution. The mechanism of coating formations was also considered in details. The results indicate that a compact and dense surface morphology with fine particle clusters of the oxalate coating on magnesium alloy is presented, which mainly consists of oxide or/and organic of Mg, Al and Zn. And the anti-corrosion of the magnesium after oxalate conversion treatment is better than that of the magnesium substrate. The results of salt spray test for oxalate coating is evaluated as Grade 9 according to ASTM B117. The electric resistance of oxalate chemical conversion coating to substrate is below 0.1 Ω.  相似文献   

17.
A novel dual nickel coating on AZ91D magnesium alloy   总被引:2,自引:0,他引:2  
Magnesium alloys covered with metal coating display excellent corrosion resistance,wear resistance,conductivity and electromagnetic shielding properties.The electroless plating Ni-P as bottom layer following the electroplating nickel as surface layer on AZ91D magnesium alloy was investigated.The coating surface morphology was observed with SEM and the structure was analyzed with XRD.Electrochemical tests and salt spray tests were carried out to study the corrosion resistance.The experimental results indi...  相似文献   

18.
The zirconia stabilized by 3 mol % Y2O3 (3YSZ) was applied onto the surface of the magnesium alloy AZ91D using electrophoretic deposition (EPD) from a non- aqueous solvent. An interlayer of aluminum between the substrate and YSZ coating was also prepared by EPD. The preparation, microstructure and corrosion resistance of the coatings were investigated. The surface morphologies of the coatings were studied by scanning electron microscopy (SEM) and their compositions were determined by X-ray diffraction (XRD). The corrosion resistance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results indicate that the aluminum interlayer has a favorable effect on the densification of the coating by formation of aluminum oxide. In addition, the corrosion resistance of coated AZ91D alloy in chloride solution is significantly improved because of the aluminum interlayer and an increase in charge-transfer resistance of the AZ91D surface in chloride solution was observed which was attributed to YSZ.  相似文献   

19.
通过化学氧化法合成本征态及氢氟酸掺杂态聚苯胺(PANI),用红外光谱对其结构进行表征。以环氧树脂为成膜物质,在AZ91D镁合金基体上制备了本征态及氢氟酸掺杂的 PANI/环氧涂层,用EIS方法研究涂层在3.5%NaCl溶液中的耐蚀性,并用SEM对浸泡后基体表面形貌进行观察。实验结果表明,与环氧清漆相比,本征态PANI的加入明显改善了环氧涂层的耐蚀性,而氢氟酸掺杂后进一步提高了PANI/环氧涂层的性能。用XPS对基体表面分析,发现添加聚苯胺的涂层在镁合金表面形成了具有保护作用的产物膜。  相似文献   

20.
AZ91D镁合金微弧氧化膜耐蚀性的试验研究   总被引:6,自引:0,他引:6  
研究了AZ91D镁合金微弧氧化膜在复合铝酸盐溶液中的耐蚀性。利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了AZ91D镁合金微弧氧化膜的物相和表面形貌;利用IM6e型电化学工作站测量了氧化膜的电化学阻抗和稳态电流/电位极化曲线;利用CMB-1501B型便携式瞬时腐蚀速度测量仪测量了氧化膜的腐蚀电流密度Icorr和年腐蚀深度MMA。试验结果表明,微弧氧化的镁合金耐蚀性提高了2~3个数量级,镁合金微弧氧化膜主要由MgO、MgAl2O4、Al12Mg17组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号