首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultra‐wideband compact bandpass filter (BPF) with configurable stopband by tuning transmission zeroes is proposed in this paper. The ultra‐wideband bandpass response is based on a diamond‐shape resonator consisting of a pair of broadside coupled diamond‐shape microstrip lines, within which a diamond shape defected ground structure (DGS) is etched in the middle. Flexible transmission zeros realized by open and short stubs can be easily adjusted to improve band selectivity and harmonic suppression. Measurement result shows that the dedicated device has a 3 dB fractional bandwidth of 148% (0.94‐6.36 GHz) with 20 dB rejection stopband from 6.87 to 9.7 GHz (77.5%) which agrees good with the simulate performance. The overall size of the proposed BPF is 0.27 λg × 0.23 λg.  相似文献   

2.
A novel technique is presented to design highly compact microstrip ultra‐wideband (UWB) bandpass filters that exhibit high selectivity quasi‐elliptical response. The design is based on transversal signal‐interaction concepts that enable the inclusion of single or dual notch‐bands within the filter's passband to eliminate interference from other services that coexist within the UWB spectrum. The filter configuration comprises of two transmission paths which include folded T‐shaped stepped impedance resonators (SIRs) that are capacitively coupled with the input/output lines to enable signal transmission. It is shown that by combining the filters of different passband centre frequencies an UWB filter can be realised with either a single‐ or dual‐notch function. The theoretical performance of the filter is corroborated via measurements to confirm that the proposed filter exhibits UWB passband of 123% for a 3 dB fractional bandwidth, a flat group‐delay with maximum variation of less than 0.3 ns, passband insertion loss less than 0.94 dB, high selectivity, a sharp rejection notch‐band with attenuation of ?23 dB, and a good overall out‐of‐band performance. Furthermore, the filter occupies a significantly small area of 94 mm2 compared with its classical counterparts. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:549–559, 2014.  相似文献   

3.
In this article, a compact double‐layer microstrip ultra‐wideband (UWB) filtering power divider with high selectivity and isolation is proposed. The filtering power divider consists of a multimode resonator at the top layer coupled with a pair of branch lines at the bottom through a slotline in the middle ground. The slotline provides strong coupling between the two layers and equally distributes the power to two branch lines. The resistor loaded about a quarter‐wavelength away from the slotline achieves high isolation within UWB range. The UWB filtering properties with controllable transmission poles and zeros as well as power splitting with enhanced isolation have been analyzed. The adjustable transmission zeros of the filter unit enables the bandwidth control of the filtering power divider. Finally, a UWB filtering power divider operating at 3.1 to 10.6 GHz has been designed, fabricated, and measured. It achieves a compact size of only 26 × 28 mm2, high isolation about 20 dB, and good out‐of‐band suppression of 40 dB.  相似文献   

4.
In this article, the method of least mean squares (LMS) is employed to design ultra‐wideband (UWB) filters with various input and output port impedances in 6‐18 GHz frequency range. Optimization process on the circuit dimensions is done by MATLAB and AWR microwave office softwares utilizing exact closed‐form relations for microstrip transmission lines and microstrip T‐junction discontinuities. The advantages of this method are its simplicity, fast design time, including impedance matching. Two design examples are depicted in the article. To validate the designed structures, the circuit model results are compared with full‐wave analysis and measurements. The first design example corresponds to equal source and load impedances. For this design, maximum measured transmission coefficient in the frequency range 5.9‐16.6 GHz is obtained as ?12 dB, upper out‐of‐band rejection around image frequency is better than ?17 dB and lower out‐of‐band rejection at 5 GHz is obtained better than ?30 dB. The second design example describes the case of unequal source and load impedances.  相似文献   

5.
In this article, computer‐aided design of a new type of microstrip lossy filter is described. The new type of lossy filter is realized by introducing resistive cross couplings into a microstrip extracted‐pole filter to achieve a flat passband. The high selectivity is achieved by introducing 2 transmission zeros using 2 extracted poles, which can be adjusted. An equivalent circuit model is established and its circuit parameters, which are useful for physical implementation of the filter, are determined in light of computer modeling. For demonstration, two 6‐pole filters centered at 2 GHz with fractional bandwidth (FBW) 6% and 20% are implemented. Experimental results, together with a theoretical comparison between different FBWs, and full‐wave electromagnetic simulation results are also presented.  相似文献   

6.
A very compact ultra‐wideband (UWB) slot antenna with three L‐shaped slots for notched‐band characteristics is presented in this article. The antenna is designed and fabricated using a new stepped slot with different size, integrated in the ground plane, and excited by a 50 Ω microstrip transmission line. The stepped slot is used to minimize the dimensions of the antenna and to achieve an impedance bandwidth between 2.65 and 11.05 GHz with voltage standing wave ratio (VSWR) less than 2. The length of the stepped slot is equal to a quarter wavelength to create a resonance in the desired frequency. Three L‐shaped slots with various sizes are etched in the ground plane to reject three frequency bands in C‐band (3.7‐4.2 GHz), WLAN (5.15‐5.825 GHz), and X‐band (7.25‐7.75 GHz), respectively. The notched‐band frequency can be controlled by changing the length of the L‐shaped slot. The proposed antenna has a very small size (20.25 × 8 × 1.27 mm3) compared with previous works. The measured and simulated results show a good agreement in terms of radiation pattern and impedance matching.  相似文献   

7.
A technique to design wideband coplanar waveguide bandpass filters is reported. The filter is realized by etching a slot on the ground plane around a gap on its central conductor and modifying the gap in the form of parallel lines. It is shown that the 3‐dB fractional bandwidth of the filter can be varied from 60 to 110% by tuning the size of the slot aperture and the length of the parallel lines. Equivalent circuit and design steps are presented. Implementation area of the filter having passband 3.2–10.5 GHz is 0.90 λg × 0.26 λg, λg being the guided wavelength at 6.85 GHz while 20‐dB stopband is at least up to 18 GHz. Insertion loss is less than 2 dB up to 9 GHz. Area of the filter having fractional bandwidth 60% at 3.85 GHz is 0.67 λg × 0.11 λg. Passband loss is within 1.5 and 20 dB stopband is at least up to 12 GHz. The proposed filter structure is very simple to integrate, and the ultra‐wideband filter is used to generate an ultra‐wideband pulse as defined by the US Federal Communication Commission. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

8.
By etching slots in the low‐impedance section of the conventional stepped‐impedance resonator, a novel slotted stepped‐impedance resonator (SSIR) is proposed. As two examples, a fourth‐order bandpass filter (BPF) operating at 1 GHz with a size of 0.078 λg × 0.062 λg and a miniaturized diplexer operating at 0.9/1.57 GHz with a size of 0.054 λ0 × 0.086 λ0 are designed based on the proposed SSIR. The fabricated BPF exhibits a high selectivity and a wide ?30 dB rejection upper stopband from 1.13 f0 to 6.52 f0, while the fabricated diplexer has up to ?60 dB output isolation. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

9.
A novel wideband microstrip bandpass filter (BPF) based on a coupled‐stub loaded resonator (CSLR) is presented in this article. The CSLR is constructed by attaching one short‐circuited parallel coupled microstrip line (PCML) in shunt to a high impedance microstrip line. The filter bandwidth can be conveniently controlled via reasonable adjusting of the impedance of PCML. Moreover, new defected microstrip structures (DMSs) introduced in the PCML functions as a means of adjusting the positions of transmission zeros, created by the PCML. The resonant mode and transmission zero chart are given, indicating that the higher modes could be suppressed by the transmission zeros. Finally, to validate the proposed method, two wideband BPF filters with and without DMSs centered at 3 GHz with 3 dB fractional bandwidth of 87% are designed and fabricated. The measured results show that both the return losses are better than 15.8 dB, while the BPF with DMSs has a ?19.4 dB isolation wideband from 1.57 to 4.23 . The measured results are in excellent agreement with full‐wave electromagnetic simulation results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:122–128, 2015.  相似文献   

10.
A wideband slot‐coupled microstrip‐to‐microstrip vertical transition is presented in this paper. The transition consists of upper/lower microstrip patch, a metallized via, a wide slot, and a CPW patch on the ground plane. The CPW patch is connected to the upper microstrip patch through the metallized via. The upper microstrip patch, the CPW patch, and the metallized via together constitute a hybrid resonator. By introducing the fundamental resonance of the hybrid resonator into the passband, a broadband microstrip vertical transition can be realized. A sample transition has been designed and measured. Experimental results indicate that a broad frequency range of 2.3 to 8.4 GHz with return loss better than 10 dB can be obtained.  相似文献   

11.
In this article, by analyzing the equivalent circuit mode for electromagnetic bandgap (EBG), a novel compact planar EBG structure is proposed for overcoming the drawback of narrow bandwidth of conventional EBG structures. The novel design is based on using meander lines to increase the effective inductance of EBG patches. The simulated and measured results demonstrate the simultaneous switching noise (SSN) can be mitigated with an ultra‐wideband from 280 MHz to 20 GHz at the restraining depth of ?40 dB. Compared with the traditional L‐bridge and meander lines EBG structures, this novel structure has the advantages of suppression bandwidth and fabrication cost. Moreover, signal integrity is achieved by the time‐domain simulation. The proposed structure provides a new kind of theoretical designing reference for EBG structure to improve the bandwidth of restraining SSN. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:429–436, 2014.  相似文献   

12.
The modeling of the physical and electrical characteristics of microstrip non‐uniform transmission lines (NTLs) utilizing artificial neural networks (ANNs) is investigated. The fundamental equations and constraints for designing variable impedance transmission lines are first presented. Then, a proof‐of‐concept example of a compact non‐uniform matching transformer and the counterpart modeled version is elaborated for source and load impedances Zs and Zl, respectively, at 0.5 GHz. For comparison purposes, weights and biases of the proposed ANN are established with three different training techniques; namely: backpropagation (BP), Quasi‐Newton (QN), and conjugate gradient (CG); at which the ABCD matrix, impedance variations, input port matching (S11), and transmission parameter (S21) are set as benchmarks to examine the validity of the trained model. The concept is then extended to model a NTL ultrawideband (UWB) Wilkinson power divider (WPD) with three resistors for improved isolation. S‐parameters derived from the trained ANN outputs are close to those obtained by the traditional time‐consuming optimization procedure, and show input and output ports matching and isolation of below ?10 dB, and acceptable values of transmission parameters over the 3.1 GHz to 10.6 GHz band. The resulting models outperform traditional optimizations in terms of simulation time and reserved resources with comparable accuracy. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:563–572, 2015.  相似文献   

13.
This article presents realization of low loss, wide stop‐band suspended substrate stripline (SSS) wideband pass filters using interdigital and stepped‐impedance resonators. SSSs have been characterized using the finite‐difference method (FDM). The experimental results of the fabricated filters are compared with the theoretical results. © 2005 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2006.  相似文献   

14.
New multi‐standard wide band filters with compact sizes are designed for wireless communication devices. The proposed structures realize dual‐wideband and quad‐wideband characteristics by using a new skew‐symmetrical coupled pair of asymmetric stepped impedance resonators, combined with other structures. The first and second dual‐wideband filters realize fractional bandwidths (FBW) of 43.2%/31.9% at the central frequencies (CF) of 1.875/1.63 GHz, and second bandwidths of 580 MHz/1.75 GHz at CF of 5.52/4.46 GHz, respectively. The proposed quad‐band filter realizes its first/second/third/fourth pass bands at CF 2.13/5.25/7.685/9.31 GHz with FBW of 46.0%/11.4%/4.6% and 5.4%, respectively. The wide pass bands are attributed to the mutual coupling of the modified ASIR resonators and their bandwidths are controllable by tuning relative parameters while the wide stop band performance is optimized by the novel interdigital cross coupled line structure and parallel uncoupled microstrip line structure. Moreover, the quad band is generated by introducing the novel defected rectangle structure. These multi‐standard filters are simulated, fabricated and measured, and measured results agree well with both simulated results and theory predictions. The good in‐band and out‐of‐band performances, the miniaturized sizes and simple structures of the proposed filters make them very promising for applications in future multi‐standard wireless communication.  相似文献   

15.
Conventional ultra‐wideband low‐noise amplifiers require a flat gain over the entire 3.1–10.6 GHz bandwidth, which severely restraints the trade‐off spaces in low noise amplifier design. This article proposes a relaxed gain‐flatness requirement based on system level investigations. Considering the wireless transceiver front‐end with antenna and propagation channel, the unflat‐gain low‐noise amplifier with an incremental gain characteristic does not degrade the performance of overall system. As an alternative to its flat‐gain counterpart, the proposed unflat gain requirement tolerates gain ripple as large as 10 dB, which greatly eases the design challenges to low‐noise amplifier for ultra‐wideband wireless receivers. Two low‐noise amplifier examples are given to demonstrate the feasibility and design flexibility under the proposed gain‐flatness requirement. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007.  相似文献   

16.
This article presents the design of a compact notch filter with a sharp roll‐off and high rejection over a wideband. The filter comprises stepped impedance resonators that are interconnected to each other at strategic points on the resonator for optimal 3 dB roll‐off and high rejection over a wide stop‐band. The fabricated third‐order filter exhibits a steep 3 dB roll‐off and rejection exceeding 50 dB over the frequency range 2.70–6.19 GHz. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:490–494, 2015.  相似文献   

17.
A novel compact wideband filter using three‐mode dual‐ring resonator is presented in this article. The resonator is constructed by two quarter wavelength transmission lines and a cascaded half wavelength dual‐ring. Formulae based on even‐ and odd‐mode analysis are derived to analyze the locations of the transmission poles and zeros of the resonator. Due to the transmission zeros in the lower and upper stopbands, the proposed filter exhibits sharp attenuations near the passband as well as very wide stopband. The filter is successfully realized by full wave EM simulation and fabricated. The measured responses of the filter agree well with the design simulation, and show that the fabricated filter has an insertion loss of better than 1.5 dB in the passband and two rejections of greater than 20 dB in the stopbands from 0 to 10GHz.  相似文献   

18.
A new all‐pass filter (APF) is proposed. The APF is based on a symmetrical ring, consisting of four sections of transmission line, which are identical in electrical length, different in characteristic impedance. Two input/output ports are connected orthogonally to the ring. The APF is analyzed by using the odd‐even model, and the all‐pass condition is then theoretically obtained. Meeting the condition, the circuit is all‐pass in frequency, but nonlinear in transmission phase. The nonlinear transmission phase with frequency may be adjusted by changing the lines' impedances, while remaining the all‐pass property. Then the APF is used to design a wideband 90° differential phase shifter with adjustable bandwidth. Samples are designed, fabricated and measured. Good agreements are achieved among the theoretic, numerical and experimental results. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:191–195, 2014.  相似文献   

19.
This paper presents a novel ultra‐wideband (UWB) antenna printed on a 70 μm thick flexible substrate. The proposed antenna consists of a hybrid‐shaped patch fed by coplanar waveguide (CPW). The ground planes on opposite sides of the feeding line have different height to improve antenna bandwidth. Simulation shows that the proposed antenna maintain wide bandwidth when changing its substrate's thickness and dielectric constant, as well as bending the antenna on a cylindrical foam. The proposed antenna is fabricated in laboratory with a simple and low‐cost wet printed circuit board (PCB) etching technique. Measured bandwidths cover 3.06 to 13.58, 2.8 to 13.55, and 3.1 to 12.8 GHz in cases of flat state and bent with radii of 20 and 10 mm, respectively. Measured radiation patterns show the antenna is omnidirectional in flat and bent cases.  相似文献   

20.
This article explores the design and analysis of a novel ultra‐wideband (UWB) antenna for body‐centric applications. The designed antenna consists of circular ring structured radiating element with 24 spokes, which resembles the shape of Ashoka chakra (Indian National flag emblem). The antenna placed on the semi flexible RT/Duroid 5880 with dielectric constant of 2.2 and occupying the dimension of 30 × 25 × 0.8 mm3. The present design aims at optimizing the antenna structure to cater UWB operating spectrum (3.1‐10.6 GHz) with a novel patch shape, which looks like the Ashoka chakra. The proposed antenna is analyzed by placing on three‐layered human phantom model and examined on head, arm at three of its operating frequencies. The maximum specific absorption rate (SAR) is found to be 1.23 W/kg and 1.29 W/kg when computed at arm and head of the human body respectively. The SAR values are observed under those conditions are satisfying the international safety standards such as FCC & IEEE C95.1:2005 & ICNIPR. Analysis of system savant (ANSYS Savant) radiation performance characteristics are also studied by placing the proposed antenna on virtual human body environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号