首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The efficiency of the Hall–Heroult electrolytic reduction of aluminum can be substantially improved by the use of a TiB2 cathode. The use of TiB2 components, however, has been hampered by the brittle nature of the material and the grain boundary attack of sintering-aid phases by molten aluminum. In the current work, TiB2 is toughened through the use of reinforcing fibers, with chemical vapor infiltration used to produce the TiB2 matrix. In early efforts it was observed that the formation of TiB2 from chloride precursors at fabrication temperatures below 900–1000°C may have allowed the retention of destructive levels of chlorine. At higher fabrication temperatures (>1000°C), using appropriate infiltration conditions as determined from the use of a process model, TiB2/THORNEL P-25 fiber composites have been fabricated in 20 h. The improved composite material has been demonstrated to be stable in molten aluminum in short-duration (24 h) tests.  相似文献   

2.
Polycrystalline Al2O3 was chemically vapor-deposited onto sintered Al2O3 substrates by reaction of AlCl3 with (1) H2O, (2) CO:H2, and (3) O2 at 1000° and 1500°C and 0.5 and 5.0 torr. Although the thermodynamics of all these reactions predict the formation of solid Al2O3, the deposition rate of the first reaction was considerably greater than that of the second. The third reaction was so slow that no measurable deposit was formed in 6 h at 1500°C. Formation of dense deposits of α-Al2O3 was favored by increasing temperature and decreasing pressure. Microstructural examination of the dense deposits showed long columnar grains, the largest of which extended through the deposit from the substrate to the surface.  相似文献   

3.
The purpose of this study was to identify and correlate the microstructural and luminescence properties of europium-doped Y2O3 (Y1– x Eu x )2O3 thin films deposited by metallorganic chemical vapor deposition (MOCVD), as a function of deposition time and temperature. The influence of deposition parameters on the crystallite size and microstructural morphology were examined, as well as the influence of these parameters on the photoluminescence emission spectra. (Y1– x Eu x )2O3 thin films were deposited onto (111) silicon and (001) sapphire substrates by MOCVD. The films were grown by reacting yttrium and europium tris(2,2,6,6-tetramethyl–3,5-heptanedionate) precursors with an oxygen atmosphere at low pressures (5 torr (1.7 × 103 Pa)) and low substrate temperatures (500°–700°C). The films deposited at 500°C were smooth and composed of nanocrystalline regions of cubic Y2O3, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600°C developed, with increasing deposition time, from a flat, nanocrystalline morphology into a platelike growth morphology with [111] orientation. Monoclinic (Y1– x Eu x )2O3 was observed in the photoluminescence emission spectra for all deposition temperatures. The increase in photoluminescence emission intensity with increasing postdeposition annealing temperature was attributed to the surface/grain boundary area-reduction effect.  相似文献   

4.
CuO x films were deposited on silica substrates by the chemical vapor deposition (CVD) method, using CuI and O2 as source gases at low pressure in a tubular reactor. The growth mechanism to obtain a dense and uniformly distributed (in the axial direction in a tubular reactor) film was investigated. It was found that the occurrence of homogenous nucleation caused an abrupt increase of deposition rate and made the film porous. Homogeneous nucleation can be prevented by properly selecting reactant concentration, reactor temperature, and reactor diameter. Based on an aerosol diffusion theory from laminar pipe flow, a method of predicting cluster size in this CVD reaction system was proposed. The result showed that the clusters formed by homogeneous nucleation had an average size of about 1 nm in diameter.  相似文献   

5.
Polymeric cyanoborane, (CNBH2) n , is a material readily prepared by passing hydrogen chloride through an ether suspension of sodium cyanotrihydroborate. This polymeric material was volatilized in a CVD reactor to produce, at 600°C, amorphous films containing boron, nitrogen, and carbon. Residual carbon present in the films was removed by ammonia treatment at 800°C, producing nearly stoichiometric boron nitride films that were adherent to a variety of substrates including silicon.  相似文献   

6.
7.
8.
Titanium diboride can be produced by ball-milling a mixture of TiO2, B2O3, and Mg metal for between 10 and 15 h. The reaction was found to be completed during the milling with no evidence of residual Mg. The unwanted phase, MgO, was readily removed by leaching in acid. The leached powder obtained after 15 h milling had a particle size of <200 nm and was highly faceted. The particle size decreased to ∼50 nm after 100 h milling and seemed to be relatively monodisperse. Scherrer calculation of the crystallite size showed that the product particles were probably single crystal.  相似文献   

9.
The interfaces between metal organic chemical vapor deposited PbTiO3 thin films and various diffusion barrier layers deposited on Si substrates were investigated by transmission electron microscopy. Several diffusion barrier thin films such as polycrystalline TiO2, amorphous TiO2, ZrO2, and TiN were deposited between the PbTiO3 thin film and Si substrate, because the deposition of PbTiO3 thin films on bare Si substrates produced Pb silicate layers at the interface irrespective of the deposition conditions. The TiO2 films were converted to PbTiO3 by their reaction with diffused Pb and O ions during PbTiO3 deposition at a gubstrate temperature of 410°C. Further diffusion of Pb and O induces formation of a Pb silicate layer at the interface. ZrO2 did not seem to react with Pb and O during PbTiO3 deposition at the same temperature, but the Pb and O ions that diffused through the ZrO2 layer formed a Pb silicate layer between the ZrO2 and Si substrate. The TiN films did not seem to react with Pb and O ions during the deposition of PbTiO3 at 410°C, but reacted with PbTiO3 to form a lead-deficient pyrochlore during postdeposition rapid thermal annealing at 700°C. However, TiN could effectively block the diffusion of Pb and O ions into the Si substrate and the formation of Pb silicate at the interface.  相似文献   

10.
Beta-type CVD-Si3N4 plates (up to 1.1 mm thick) have been prepared by adding TiCl4 vapor to the system SiCl4-NH3-H2 at deposition temperatures of 1350° to 1450°C, while α-type or amorphous CVD-Si3N4 was obtained without TiCl4 vapor at the same deposition temperature. Three to four wt % 777V was included in the β-type CVD-Si3N4 matrix. The density, preferred orientation, and lattice parameters of β-type CVD-Si3N4 were examined.  相似文献   

11.
A process of coating Al2O3 particles with TiO2 by hydrolysis of Ti(OC4H9)4 using chemical vapor deposition in a rotary reactor has been developed. The process resulted in (1) a coating film of TiO2 which was compact and uniform with the fraction of TiO2 being 0.1%–10.0% and (2) an amorphous TiO2 coating at a low reaction temperature converted to anatase at a reaction temperature higher than 673 K.  相似文献   

12.
Boron ions were implanted at room temperature in Ti films at a high dose (7.1 × 10I7 and 2.3 × 1018 ions/cm2), The formation of TiB2 films was confirmed by X-ray diffraction. Boron concentration profiles in implanted films were studied by secondary-ion mass spectrometry.  相似文献   

13.
The thermal behavior of nanoparticles BaTiO3, prepared by a radio-frequency plasma chemical vapor deposition (RF-plasma CVD) method, was characterized by various analysis methods. The BaCO3 phase was included in the powder as byproducts, which is also observed in hydrothermal BaTiO3 powder. The BaCO3 phase decomposed and disappeared by annealing at 873 K for 30 min. H2O, N2, CO2 and H2, were detected by a thermal desorption spectra measurement from BaTiO3 powder. The annealed powder became well-crystallized particles without grain growth, although as-prepared powder included polycrystalline particles. We successfully observed in-situ grain growth for BaTiO3 nanoparticles by thermal transmission electron microscope. At the initial step of normal grain growth, very fine particles with 40–60 nm diameters started to merge into the larger grains around 1083 K. The migration rate was measured by video images and a grain boundary diffusion coefficient Dgb was calculated.  相似文献   

14.
Porous photocatalytic TiO2 thin films were fabricated by the leaching technique, followed by aerosol deposition. Mixed powders of TiO2 and β-tricalcium phosphate (TCP) were aerosol deposited at room temperature for the initial fabrication of composite films. After the β-TCP phases were leached out from the composite films in a diluted HCl aqueous solution for 24 h, porous TiO2 films remained on the substrate. To fabricate these porous films, the β-TCP content was varied from 10 to 45 wt% and submicrometer-sized pores were formed after leaching. The porous TiO2 films showed strong initial photocatalytic activities due to the adsorption effect of the pores and the enlarged surface area.  相似文献   

15.
BetaSi3N4 coatings were obtained by chemical vapor deposition in a fused-silica reaction tube by outside heating of the system SiCl4-NH3-N2 at a deposition temperature (reaction tube temperature) of 1300°C, whereas α- and α+β-phase coatings were obtained at depositon temperatures of 1150° and 1250°C, respecively. Formation of β-phase coatings at relatively low temperatures is explained in terms of the effect of a catalytic impurity, SiO vapor from the reaction tube. The X-ray diffraction patterns and sulface morphologies of the coatings were studied.  相似文献   

16.
The use of monoclinic ZrO2 as an additive improves the mechanical properties of TiB2-based composites without the use of stabilizers. In particular, TiB2-30% ZrO2 compacts exhibited a transverse rupture strength of 800 MN/m2, few pores, and a KI c of 5 MPa·m1/2. The high strength and toughness are thought to result mainly from the presence of partially stabilized tetragonal ZrO2 and from solid solution of (TiZr)B2 formed in sintering.  相似文献   

17.
The deposition of boron carbide (B13C2) onto graphite substrates was accomplished by using a hot-wall chemical vapor deposition (CVD) reactor at a pressure of 10.1 kPa in the temperature range of 1000°–1400°C. A modified impinging-jet geometry was used to simplify the mass-transfer analysis. Coatings were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The surface morphology was composed of well-defined facets, the size of which was dependent on the growth rate and deposition time, as would be expected from a competitive growth mechanism. TEM micrographs of the coating showed long, columnar grains that emanated from a narrow nucleation zone. The growth rate could be adequately described by a first-order kinetic expression, with respect to the bulk gas phase boron chloride (BCl3) concentration. The activation energy of the kinetic expression was estimated to be 93.1 kJ/mol. It was proposed that the deposition was limited by the adsorption of (BCl3) onto the substrate surface.  相似文献   

18.
Ferroelectric Pb(ZrxT1–x)O3, films were successfully and reproducibly deposited by both hot–wall metalorganic chemical vapor deposition (MOCVD) and cold-wall MOCVD. One of the important problems associated with the MOCVD techniques is the selection of ideal precursors. After an intensive investigation for the most suitable precursors for MOCVD PZT films, the safe and stable precursors, namely lead tetramethylheptadione [Pb(thd)2], zirconium tetramethylheptadione [Zr(thd)4], and titanium ethoxide [Ti(OEt)4], were chosen. The films were deposited at temperatures as low as 550°C and were single-phase perovskite in the as-deposited state. Also, the films were smooth, specular, crack-free, and uniform, and adhered well to the substrates. The stoichiometry of the films can be easily controlled by varying the individual precursor temperature and/or the flow rate of the carrier gas. Auger electron spectroscopic (AES) depth profile showed good compositional uniformity through the thickness of the films. The AES spectra also showed no carbon contamination in the bulk of the films. As-deposited films were dense and showed uniform and fine grains (≅0.1 μm).The optical properties of the films on the sapphire disks showed high refractive index ( n = 2.413) and low extinction coeflicient ( k = 0.0008) at a wavelength of 632.8 nm. The PZT (82/18) film annealed at 600°C showed a spontaneous polarization of 23.3 μC/cm2 and a coercive field of 64.5 kV/cm.  相似文献   

19.
The high-temperature equilibrium concentration of the gaseous species and of the deposited glass formed by the oxidation of the chlorides of silicon and germanium was measured and compared with thermodynamic calculations. The equilibrium incorporation of germanium in phosphate-silicate particles formed from the gas at 1650 K is shown to form a theoretical basis from which the actual composition of completed preforms and optical fibers made by the modified chemical vapor deposition process can be calculated. The efficiency of incorporation of germanium dioxide in the silica glass system is determined as a function of the oxygen concentration and the ratio of germanium to silicon. The recently redeveloped element potential method is used to minimize the Gibbs energy of the system and obtain the temperature and compositional dependences. The agreement of calculated and experimental results obtained in this work suggests a broad spectrum of uses of the method for understanding and calculating chemical reactions. The method is exceptionally well suited for applications where the determination of species concentrations for multiphase processes is desired over broad ranges of concentrations, temperatures, and pressures.  相似文献   

20.
CuAlO2 is a delafossite-type compound and is a known p -type semiconductor. Transparent CuAlO2 thin films were prepared using a sol–gel technique. The films with an Al/Cu atomic ratio of 1.0 consisted of CuAlO2, Cu2O, and CuO after heat treatment at 800°–900°C in nitrogen gas. The electrical resistivity of the film heated at 800°C was 250 Ω·cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号