首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
大变形Cu-Ag合金原位纤维复合材料的稳定性   总被引:10,自引:1,他引:10  
制备了Cu-10Ag和Cu-10Ag-0.05Ce合金,其铸态结构由Ag沉淀、(Cu Ag)共晶和Cu基体组成.采用大变形法制备了两合金的原位纳米纤维复合材料.研究了大变形(真应变ε≥9)合金和时效态合金的结构与性能,观察了Ag沉淀过程.结果表明微量Ce添加剂细化Ag纤维尺寸,提高再结晶温度和不连续沉淀的温度,明显提高形变态、时效态和完全退火态Cu-10Ag合金的拉伸强度,而保持与Cu-10Ag合金相近或相当的导电率.真实应变ε=9.9的大变形Cu-10Ag和Cu-10Ag-0.05Ce合金的抗拉强度分别为1 190和1 430 MPa,导电率分别为68.7%和67.6%IACS,这些性能在低于300℃是稳定的.  相似文献   

2.
研究了高温退火和二次退火对冷轧后Ni40(FeCoCrAl)60高熵合金组织和性能的影响。结果表明,铸态合金由FCC+BCC双相组成。冷轧并再结晶后,合金保持稳定的相结构,FCC相由树枝晶转变为等轴晶,BCC相位于FCC相之间和FCC相之内。铸态合金的屈服强度和抗拉强度分别为450 MPa和870 MPa,伸长率为40%。室温冷轧后合金强度显著升高,屈服强度和抗拉强度分别是铸态合金的2.9倍和1.7倍,伸长率降至4%。再结晶退火使屈服强度和抗拉强度分别降为590 MPa和820 MPa,伸长率为12%。  相似文献   

3.
研究了磷变质对半连续铸造Al-17.5Si-4.5Cu-1Zn-0.7Mg-0.5Ni变形合金初晶硅形貌与室温拉伸性能的影响。结果表明:磷变质处理后,铸锭(直径100 mm)中初晶硅形核率增加、颗粒分布均匀,其心部初晶硅平均尺寸由未变质处理的37μm细化到19μm;铸态变质处理合金室温抗拉强度为265 MPa,T6状态抗拉强度为345 MPa;实现了大压下量热变形,热变形变质处理合金在T6状态下,抗拉强度达到383 MPa,伸长率为1.15%。  相似文献   

4.
SiC颗粒增强铝基复合材料的显微组织与力学性能   总被引:2,自引:3,他引:2  
采用压铸浸渗法制备了体积分数为50%的SiC/Al-5.3Cu-0.8Mg-0.6Ag-0.5Mn耐热铝基复合材料.通过拉伸测试与组织观察,研究了高体积分数SiC颗粒增强对基体合金的显微组织与力学性能影响.结果表明,在基体Al-5.3Cu-0.8Mg-0.6Ag-0.5Mn合金中掺入高体积分数的SiC颗粒后,复合材料的时效硬化与拉伸性能得到了大幅度的提高,185 ℃峰时效处理后的抗拉强度从356 MPa增大到520 MPa.SiC/Al-5.3Cu-0.8Mg-0.6Ag-0.5Mn复合材料的组织致密,分布均匀,其断裂方式包括界面脱开、基体韧断和增强体开裂.高体积分数SiC颗粒的增强并不改变基体合金的时效析出过程,析出相由Ω相和少量θ'相组成,但SiC颗粒与基体之间发生了界面反应,生成了纳米级的Al4C3化合物.  相似文献   

5.
采用真空感应熔炼、热锻和冷拉拔等工艺制备了Cu-2Ag-0.075Y合金线坯,通过拉伸性能测试、导电性能测试和显微组织观察,研究不同退火工艺下Cu-2Ag-0.075Y合金线坯的组织和性能。结果表明,Cu-2Ag-0.075Y合金线坯抗拉强度随着退火时间的延长先显著下降至300~435 MPa,随后下降速率明显放缓,最终趋于平稳,退火温度越高,抗拉强度越低。而伸长率和导电率的变化规律则与抗拉强度相反,先是迅速提升,随后提升速率放缓,最后趋于平稳,550 ℃退火试样可获得较高伸长率和导电率。随着退火温度的提高和退火保温时间的延长,都可以使Cu-2Ag-0.075Y合金线坯组织再结晶程度加大。采用550 ℃×60 min退火工艺,Cu-2Ag-0.075Y合金线坯可以获得细小、均匀的等轴晶组织,良好的伸长率和导电率匹配,有利于其进行后续超微细丝拉拔加工。  相似文献   

6.
采用铸造、锻造工艺获得组织均匀的Ti-1Al-8V-5Fe(Ti185)合金棒材,分析了该合金的组织形貌和力学性能。结果表明,Ti185合金中没发现成分偏析导致的"β斑"或Fe元素的富集现象。棒材中初始β相晶粒尺寸达到800μm,在β相晶粒内部析出高密度的α相。在室温下,锻态Ti185合金的抗拉强度为1192 MPa,伸长率为1.7%。经过950℃的固溶热处理及450℃的时效处理后,热处理态的Ti185合金α相尺寸和数量明显减少,合金的室温抗拉强度仍达到1275 MPa,伸长率同样达到1.65%。在400℃的高温拉伸条件下,锻态Ti185合金抗拉强度较室温大幅降低,抗拉强度为877 MPa。而热处理态的Ti185合金抗拉强度并没有大幅改变,抗拉强度为1375 MPa。  相似文献   

7.
在250、300、400℃下分别对Al-0.75Mg-0.75Si-0.8Cu-0.7Zr合金进行大应变轧制变形,采用拉伸性能测试和扫描电镜(SEM)等研究了轧制温度对不同处理态合金显微组织和力学性能的影响。结果表明:在250℃轧制时,Al-0.75Mg-0.75Si-0.8Cu-0.7Zr合金的抗拉强度为204 MPa,伸长率为15.2%;随着轧制温度的升高,强度逐渐降低,而伸长率不断增大;合金经300℃热轧+510℃×80 min+195℃×13 h+冷轧加工后的晶粒最为细小,其综合力学性能最好,抗拉强度为475 MPa,伸长率为8.13%,断口上分布着大量细小均匀的韧窝。  相似文献   

8.
利用光学显微镜、扫描电镜、X射线衍射、拉伸试验等方法,研究了固溶处理和挤压对Mg-6Y-7RE-0.4Zr合金显微组织和力学性能的影响,以及挤压后合金的高温力学性能。结果表明,铸态合金组织主要由α-Mg基体和Mg24Y5、Mg12RE相组成,经过固溶处理(500℃×8h)之后,Mg-Y相基本消失,Mg-RE相仍有部分存在于晶界处;室温条件下,挤压后合金塑性有了大幅度提高,抗拉强度由156MPa提高到260MPa,且出现了明显的屈服特征,屈服强度为220MPa,伸长率由0.5%提高到7.0%;高温条件下,低于250℃时挤压态合金仍保持与室温条件下相当的力学性能,300℃时强度有所降低,伸长率大幅度提高,σ=215MPa,σ=164MPa,δ=20.5%。  相似文献   

9.
利用Pandat软件模拟建立了Al-x Si-4.0Cu-2Ni-0.5Mg系合金的平衡凝固相图,测量其DSC曲线,并观察不同固溶处理后的组织特征,结合DSC曲线以及显微组织观察对铸态Al-Si合金设计热处理工艺。结果表明:采用相图计算软件计算平衡相图,并结合DSC曲线以及金相图来确定Al-12Si-4.0Cu-2Ni-0.5Mg合金热处理工艺的方法是可行的,确定最佳热处理工艺为(500±5)℃固溶6 h+淬火+(230±5)℃时效2.5 h,热处理后,合金在350℃时的抗拉强度为112MPa、伸长率4.8%;在420℃时,抗拉强度为58.51 MPa、伸长率12.48%。高温下合金的抗拉强度较低,但伸长率大大增加。  相似文献   

10.
采用扫描电镜、透射电镜、拉伸试验机和热电性能分析系统等研究了退火对Cu-24%Ag合金显微组织、力学性能以及电学性能的影响,通过构建电子界面散射模型对合金导电机制进行了研究。结果表明,通过退火对Cu-24%Ag合金的显微组织进行了有效调控,改善了其综合性能。与冷轧态相比,合金经350 ℃退火1 h后,抗拉强度下降至冷轧态的95%,合金导电率提升了4%IACS。经450 ℃退火1 h,由于Ag纤维的溶解,合金的抗拉强度显著下降,只有冷轧态的一半左右;Ag纤维的溶解降低了电子的散射几率,使得导电率大幅度提升。因此,合金在350 ℃退火1 h后综合性能最佳,其抗拉强度和导电率分别为622 MPa和81%IACS。  相似文献   

11.
设计了Ag-(15~26)Cu-(13~20)In-(3.1~6.9)Ti活性钎料,分别在780℃/20 min,780℃/40 min和800℃/10 min三种参数下实现了SiO2f/SiO2复合材料与铌的连接,分析了接头微观组织,测试了接头室温抗剪强度.其中800℃/10 min钎焊参数下的接头平均抗剪强度最高,达到21.6 MPa;微观分析结果表明,接头中靠近SiO2f/SiO2母材界面处形成了厚度约为2μm的连续扩散反应层,靠近铌的界面钎料与母材也形成了良好的结合.该钎焊参数下接头界面物相依次为:SiO2f/SiO2→TiO+TiSi2→TiO+Cu3Ti→Ag(s, s)+Ag3In+Cu(s, s)→Nb.  相似文献   

12.
采用拉伸性能和导电率测试、光学显微镜(OM)、扫描电镜(SEM)、差热分析(DSC)、透射电镜(TEM)研究了固溶温度和时间对Al-8.8Zn-2.0Mg-2.1Cu-0.1Zr-0.1Ce合金板材微观组织、拉伸性能及断口形貌的影响。结果表明,试验合金适宜的固溶工艺为470 ℃×60 min,使冷轧态金属间化合物充分固溶。在此工艺下合金时效后的抗拉强度、屈服强度(以Rp0.2计)以及伸长率分别为646 MPa、581 MPa和14.5%。TEM观察发现合金板材固溶时效后晶内强化相η′仅为2~5 nm,并且晶界析出相η呈现断续分布。此外,合金拉伸断面韧窝中大量弥散分布的AlCuCeZn粒子有利于合金塑性的明显提升。  相似文献   

13.
采用座滴法开展Ag-21Cu-4.5Ti合金钎料对SiO2-BN复相陶瓷润湿与铺展行为研究. 利用SEM、XRD分析润湿界面微观组织以及形成机理. 通过调控SiO2-BN复相陶瓷中BN含量,研究Ag-21Cu-4.5Ti/SiO2-BN复相陶瓷润湿体系的润湿模型. 结果表明,Ag-21Cu-4.5Ti/SiO2-BN复相陶瓷润湿体系的典型界面反应产物为TiN和TiB2,随着体系BN含量的增加,润湿性逐渐变好. 对SiO2-BN复相陶瓷与Nb进行钎焊试验,典型界面组织为SiO2-BN复相陶瓷/TiN + TiB2/Ti2Cu + (Ag,Cu)/(βTi,Nb)/Nb. 接头抗剪强度随着钎焊时间升高先增大后减小,当钎焊温度为880 ℃,保温时间10 min时,钎焊接头抗剪强度最高,到达39 MPa.  相似文献   

14.
使用真空电弧炉熔炼出(Fe50Mn30Co10Cr10)94Al6合金,利用冷轧及在不同温度对合金进行退火,以期望得到由多尺度再结晶晶粒构成的层状结构;并对不同退火温度的样品进行拉伸性能测试。利用扫描电镜和EBSD对合金组织形貌进行表征,采用X射线衍射方法研究其相组成。结果表明:合金在铸态和冷轧后相组成未发生变化,700 ℃退火得到较好的多尺度再结晶晶粒的层状结构,其屈服强度为487 MPa,抗拉强度为708 MPa,断后伸长率为39%,表现出良好的综合力学性能。  相似文献   

15.
对经挤压开坯的一种低密度铌合金分别在1000,1100,1200℃下进行了热轧,并利用光学显微镜、扫描电镜和场发射透射显微镜对试样的组织形貌进行了表征;对合金的室温和高温拉伸强度、延伸率进行了测试。结果表明:在1200和1100℃温度下热轧时,合金均具有优良的室温和高温性能,室温强度在600MPa以上,室温塑性大于12%,高温下的强度在80MPa以上,高温塑性大于30%,且随轧制温度升高,抗拉强度降低,塑性增大;而在1000℃下热轧时,室温和高温力学性能均较低,且室温拉伸断口表现为脆性断裂。  相似文献   

16.
采用冷轧和退火热处理工艺制备了不完全再结晶结构的Fe40Mn10Cr25Ni25高熵合金,分析了合金的室温(298 K)及低温(77 K)拉伸时的力学性能。结果表明,合金具有优良的室温及低温力学性能,合金在低温拉伸时强度和塑性均得到了提高,其室温强度和断后伸长率分别为880 MPa和18%,低温强度和断后伸长率分别为1360 MPa和36%。合金在室温变形以位错滑移为主,低温变形以位错滑移和孪生为主。室温拉伸时,粗晶晶粒先于细晶晶粒变形,导致试样内部产生了应变梯度,提高了合金的加工硬化率,使合金在室温下具有良好的强塑性。低温拉伸时,粗晶晶粒中形成了大量的变形孪晶,从而提高了合金的低温力学性能。  相似文献   

17.
铜基形变原位复合材料是制备高强高导铜合金的新方法。由于Fe元素相对Nb、Ag等元素便宜,且板带铜材需求量巨大,使得Cu-Fe原位复合材料带材制备成为高性能铜合金研究的热点。文章通过冷轧和中间退火工艺制备了Cu-15Fe-0.15Zr形变原位复合材料,重点研究了中间退火对该材料抗拉强度、导电率和软化温度的影响。结果表明,中间退火可以在不损害材料强度的情况下大幅提高其电导率,而且材料的抗软化温度大于550℃。通过变形和中间退火的合理配合,可获得较理想的材料抗拉强度和电导率的匹配。  相似文献   

18.
蔡晨  谷宇  李静媛 《金属热处理》2022,47(12):19-27
研究了60 μm厚Fe-36Ni因瓦合金箔冷轧态、退火态及淬火态的热膨胀行为及力学性能演变规律和作用机理。结果表明,冷轧态合金具有最小的热膨胀系数,淬火态次之,退火态热膨胀系数最大;热处理可有效提高合金的居里温度Tc,从而增大使用温度范围,900 ℃保温1.5 h淬火试样具有最优的热膨胀性能($\bar{α}$(20-100 ℃)=1.02×10-6 K-1,Tc=276 ℃),自由取向晶粒的增加是导致合金热膨胀系数增大的原因。与冷轧态相比,热处理后合金发生完全再结晶,并产生退火孪晶伴随有晶粒尺寸的变化和∑3n晶界比例快速升高,其中800 ℃保温1.5 h淬火试样的晶粒最细小(6.6 μm),∑3n晶界占比最高,具有最高的屈服强度(267 MPa)和抗拉强度(414 MPa)。淬火处理试样的综合性能优于退火试样。相同热处理方式下,升高热处理温度,一方面降低热膨胀系数,提高居里温度;另一方面也降低了强度。  相似文献   

19.
通过真空悬浮熔炼炉熔炼制备了CrCoNi中熵合金,采用900 ℃热轧(变形量50%)、500 ℃温轧(变形量50%)获得轧制板材,利用光学显微镜、X射线衍射仪、扫描电镜、硬度计和万能试验机,研究轧制变形对合金组织结构和力学性能的影响。结果表明:CrCoNi中熵合金铸态时为简单的单相FCC固溶体结构,随着轧制变形的进行,无新相产生;CrCoNi合金有较好的塑性变形能力,塑性变形后其力学性能得到大幅度的提升,热轧后,其抗拉强度能达到890 MPa,伸长率能达到60%,并且通过加大变形量以及热轧+温轧的组合可实现强度的进一步的提升;严重的晶格畸变、加工硬化以及细晶强化共同促进了其高强度与良好韧性的结合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号