首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduced a mass-reared pyrethroid-resistant strain of the predatory phytoseiid mite Amblyseius fallacis (Garman) into an Ontario peach orchard in an attempt to control populations of the phytophagous mites Panonychus ulmi Koch and Tetranychus urticae Koch (Acari: Tetranychidae). Releases of 1,000 and 2,000 mites per tree were made, at three different times. The release of 2,000 mites per tree in June and in July resulted in significantly higher phytoseiid densities than was observed on control trees. However, densities of P. ulmi or T. urticae were not significantly affected by any release rate or by timing. The release of 1,000 A. fallacis per tree, or of any density in August, did not significantly increase phytoseiid abundance. In the following year, population dynamics of both phytoseiid and phytophagous mites were not significantly affected by the previous year's release. Amblyseius fallacis can be a useful predator in some fruit orchards. However, further research is necessary into the timing and rate of release, modified spray programmes, and with different crops, in order to clarify the role of this species for biological control in Ontario peach orchards.  相似文献   

2.
Herbicide strips are used in apple orchards to promote tree growth and survival, to increase yield and to reduce the risk of rodent damage to tree bark. However, herbicide strips, particularly wider ones, may cause problems including soil erosion, reduced organic matter, leaching of nitrates into ground water and increased incidence of plant diseases and pests, including two-spotted spider mites, Tetranychus urticae Koch. In this 2 year study we monitored mite dynamics in apple trees and used sticky bands on tree trunks to determine rates of T. urticae immigration into Nova Spy apple trees in plots with wide (2 m) or narrow (0.5 m) herbicide strips. Use of wider herbicide strips promoted two risk factors that could trigger outbreaks of tetranychid mites. First, concentrations of leaf N in apple trees were higher and those of P and K were lower with the wide strips. Such changes in nutritional quality of leaves would increase the potential for more rapid population growth of T. urticae, and to a lesser extent, the European red mite, Panonychus ulmi (Koch). Second, there were higher rates of T. urticae immigration from the ground cover vegetation into the trees. In 2006, and for most of 2007, densities of T. urticae were higher with wide herbicide strips, whereas densities of P. ulmi were not enhanced. However, by late August to early September in 2007, densities of both tetranychids were lower with wide herbicide strips. This is because both risk factors were counterbalanced, and eventually negated, by the enhanced action of phytoseiid predators, mostly Typhlodromus pyri Scheuten. From July through September 2006, ratios of phytoseiids to tetranychids were always several-fold lower with wide herbicide strips but in 2007, from mid-July onwards, predator–prey ratios were usually several-fold higher with wide strips. However, this numerical response of phytoseiids to prey density can only occur where the pesticide program in orchards is not too harsh on phytoseiids. Hence the impact of width of herbicide strip is contingent on the composition and size of the phytoseiid complex and the impact of pesticides on predation.  相似文献   

3.
In choice test experiments on strawberry leaf disc arenas the phytoseiid mites Neoseiulus californicus and N. cucumeris were more effective than Typhlodromus pyri as predators of the phytophagous mites Tetranychus urticae and Phytonemus pallidus. There were no preferences shown for either prey by any of these predators. In multiple predator leaf disc experiments both Phytoseiulus persimilis and N. cucumeris significantly reduced numbers of T. urticae eggs and active stages; this effect was seen when the two species were present alone or in combination with other predator species. Neoseiulus californicus was less effective at reducing T. urticae numbers, and T. pyri was not effective; no interaction between predator species was detected in these experiments. When T. urticae alone was present as prey on potted plants, P. persimilis and N. californicus were the only phytoseiids to significantly reduce T. urticae numbers. These two predator species provided effective control of T. urticae when P. pallidus was also present; however, none of the predators reduced numbers of P. pallidus. There were no significant negative interactions when different species of predators were present together on these potted plants. In field experiments, releases of both P. persimilis and N. cucumeris significantly reduced T. urticae numbers. However, there was a significant interaction between these predator species, leading to poorer control of T. urticae when both species were released together. These results show the importance of conducting predator/prey feeding tests at different spatial scales.  相似文献   

4.
The lethal humidity (LH50) responses at 20°C of eggs of two strains of Neoseiulus fallacis (Garman) were 71.6 and 69.7%; of three strains of Amblyseius andersoni (Chant) were 62.9, 62.0 and 62.4% and of one strain each of Typhlodromus pyri Scheuten and Metaseiulus occidentalis Nesbitt were 55.0 and 28.4%, respectively. Eggs of three genetically distinct strains of A. andersoni from Oregon, the Netherlands and Italy did not respond differently from one another nor did eggs of freely hybridizing N. fallacis from Michigan and Oregon. Mortality of larvae through development to early protonymphs at 50% RH, 20°C. was 91.9, 82.3, 46.2 and 31.0% for fed mites and 98.1, 83.2, 67.0 and 89.7% for unfed mites of Oregon strains of N. fallacis, A. andersoni, T. pyri and M. occidentalis, repectively. Fed larvae-protonymphs of M. occidentalis and T. pyri were more tolerant of low humidity than fed larvae-protonymphs of N. fallacis and A. andersoni. Mortality was less for fed than unfed larvae-protonymphs of M. occidentalis and T. pyri, but there were no differences for A. andersoni and N. fallacis. Levels of feeding by predator larvae on T. urticae and cannibalism by phytoseiid protonymphs contributed to species differences. Responses to humidity are discussed in relation to geographic and host plant distributions and biological control by single or mixed species populations of phytoseiids.  相似文献   

5.
Amblyseius fallacis Garman has been selected for pyrethroid resistance and mass reared for experimental release as a biological control agent for tetranychid mites on a number of crops in Canada. Several releases of this predator onto apple and peach trees have failed to result in the establishment of A. fallacis, or in the biological control of Panonychus ulmi Koch. Here, we test the hypothesis that the change of host-plant at the time of release is a critical factor in the establishment of A. fallacis for biological control of P. ulmi. Functional and numerical response studies were undertaken on two populations of A. fallacis: a wild strain collected from the canopy foliage of an apple orchard near Vineland, Ontario; and a second strain reared on bean plants in a commercial insectary with Tetranychus urticae as prey. Each population consumed significantly more P. ulmi and produced significantly more eggs when on leaf disks from the plant species they were reared on, than on leaf disks from the novel host plant. A further experiment was conducted to determine if establishment and biological control of mass-reared A. fallacis could be affected by rearing a population for a short term on apple leaves prior to release on apple trees. Three release treatments were made into potted apple trees in a glasshouse, using predators commercially mass-reared on bean and T. urticae: A. fallacis released directly; A. fallacis reared in the laboratory for four weeks on bean and T. urticae; A. fallacis reared on apple leaves and T. urticae for four weeks. They were compared with a control treatment lacking predator release. Contrary to results of the functional and numerical response studies, no difference was observed between release treatments. All release treatments adding A. fallacis resulted in a similar, if limited, degree of biological control of P. ulmi. These results indicated that there may be short-term effects of host plant on the establishment of A. fallacis and biological control of P. ulmi, which in our study were observed as an initial reduction of the predatory response. However, in a test, the predators appeared to overcome these short-term effects and successfully established on the new host-plant to control P. ulmi.  相似文献   

6.
The number of eggs oviposited or left in the opisthosomas of dead mites (total eggs) was assessed for Metaseiulus occidentalis (Nesbitt), Neoseiulus fallacis (Garman), Typhlodromus pyri Scheuten or Amblyseius andersoni Chant when each was caged with either (1) no Tetranychus urticae Koch, (2) only odours of T. urticae, (3) ten eggs of M. occidentalis or (4) ten nymphs of M. occidentalis (T. pyri for M. occidentalis). The total eggs for the no prey versus odour tests did not differ within species; the levels were the greatest for N. fallacis > T. pyri > A. andersoni > M. occidentalis. Among treatments, egg means did not differ for M. occidentalis but they did for N. fallacis and T. pyri and similar trends were seen for A. andersoni. Egg means were usually less for mites held with ten predator nymphs than mites held with ten predator eggs or with no prey. Were adult females with nymphs absorbing rather than ovipositing their eggs or dying with them in their opisthosomas? Activity levels (walking) for adult females were no more for mites held with nymphs versus no food. The data indicated that interference by nymphs was not increasing the energy use of females and thus reducing egg levels. However, tests with ten nymphs, one egg and no adult female had egg losses from nymphal predation that could account for fewer eggs in cage tests. Overall, no evidence for absorption was found. If it occurs, it must be among younger eggs or mites exposed to less rapid prey losses than were the mites tested here; in addition, other stimuli may cause absorption. The total eggs in sticky-tape tests were greatest for N. fallacis > M. occidentalis > T. pyri > A. andersoni. Cage versus stick-tape data differed most for M. occidentalis because of cannibalism. All four mites cannibalized eggs but M. occidentalis did most rapidly and extensively. When starved, it laid all of its eggs before the other three species did. Such behaviours may enhance survival of M. occidentalis when prey become scarce.  相似文献   

7.
We recently reported evidence for increased diapause incidence in the spider mite Tetranychus urticae in presence of the predatory mite Typhlodromus pyri. This effect may arise from (1) selective predation on non-diapause spider mites, (2) predator-induced diapause in spider mites, or (3) both. Using a different strain of T. urticae, we first recovered increased diapause incidence in association with predators. Then, we tested for selective feeding in two-choice experiments with equal numbers of non-diapause and diapause spider mites. We found that the predatory mite had a significant preference for the latter. This indicates that increased diapause incidence in association with predatory mites is not due to selective predation. Therefore, predator-mediated physiological induction of diapause seems a more likely explanation. The cues leading to induction appear to relate to the predators, not their effects, since predation simulated by spider-mite removal or puncturing did not significantly affect diapause incidence. Why spider mites benefit from this response, remains an open question.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

8.
Generalist phytoseiids are often observed for long periods on plants in the absence of prey, feeding on alternative foods and reaching high population levels. The persistence of generalist predatory mites on plants with a scarcity or absence of prey is a requirement for successful biocontrol strategies of herbivore mites. The importance of pollen as an alternative food for the support of generalist predatory mite populations is widely recognized. However, on grape the presence of pollen is often limited and thus other food sources should contribute towards generalist predatory mite persistence on perennial plants. Previous field observations reported the relationships between the population increases of generalist phytoseiids with late-season spread of grape downy mildew (GDM) Plasmopara viticola. In this study, we test the hypothesis that GDM could be a suitable food source for the predatory mites Amblyseius andersoni and Typhlodromus pyri. In the laboratory we compared the development times, oviposition rates and life-table parameters of predatory mites feeding on pollen or GDM mycelium and spores. Grape downy mildew supported the survival, development and oviposition of T. pyri and A. andersoni. Life-table parameters showed that GDM was a less suitable food source than pollen for both phytoseiid species and that it was more favorable for A. andersoni than for T. pyri. Implications for predator–prey interactions and conservation biological control in vineyards are discussed.  相似文献   

9.
Seven citrus orchards on reduced- to no-pesticide spray programs were sampled for predacious mites in the family Phytoseiidae (Acari: Mesostigmata) in central and south central Florida. Inner and outer canopy leaves, open flowers, fruit, twigs, and trunk scrapings were sampled monthly between September 1994 and January 1996. Vines and ground cover plants were sampled monthly between September 1994 and January 1996 in five of these orchards. The two remaining orchards were on full herbicide programs and ground cover plants were absent. Thirty-three species of phytoseiid mites were identified from 35,405 specimens collected within citrus tree canopies within the seven citrus orchards, and 8,779 specimens from vines and ground cover plants within five of the seven orchards. The six most abundant phytoseiid species found within citrus tree canopies were: Euseius mesembrinus (Dean) (20,948), Typhlodromalus peregrinus (Muma) (8,628), Iphiseiodes quadripilis (Banks) (2,632), Typhlodromips dentilis (De Leon) (592), Typhlodromina subtropica Muma and Denmark (519), and Galendromus helveolus (Chant) (315). The six most abundant species found on vines or ground cover plants were: T. peregrinus (6,608), E. mesembrinus (788), T. dentilis (451), I. quadripilis (203), T. subtropica (90), and Proprioseiopsis asetus (Chant) (48). The remaining phytoseiids included: Amblyseius aerialis (Muma), A. herbicolus (Chant), A. largoensis (Chant), A. multidentatus (Chant), A. sp. near multidentatus, A. obtusus (Koch), Chelaseius vicinus (Muma), Euseius hibisci Chant, Galendromus gratus (Chant), Metaseiulus mcgregori (Chant), Neoseiulus mumai (Denmark), N. vagus (Denmark), Phytoscutus sexpilis (Muma), Phytoseiulus macropilis (Banks), Proprioseiopsis detritus (Muma), P. dorsatus (Muma), P. macrosetae (Banks), P. rotundus (Muma), P. solens (De Leon), Typhlodromips deleoni (Muma), T. dillus (De Leon), T. dimidiatus (De Leon), T. mastus Denmark and Muma, T. simplicissimus (De Leon), and T. sp. near tunus, and Typhlodromus transvaalensis (Nesbitt). Eighty-two ground cover plants or vines were sampled within the five orchards and one or more phytoseiids were collected from 71 of these plants. Five ground cover plants with the highest numbers of phytoseiids included: Bidens alba (L.) DC (1,420 mites within 13 species), Solanum americanum L. (1,355 mites within 8 species), Amaranthus spinosus L. (1,137 mites within 11 species), Gnaphalium pensylvanicum Willd. (844 mites within 8 species) and Richardia brasiliensis (Meg.) Gomez (354 mites within 8 species).  相似文献   

10.
The ecological impact of introduced biological control agents on native species of arthropods is a matter of considerable debate. This study investigated the ability of the non-native predatory mite Neoseiulus californicus to feed on the native Typhlodromus pyri and vice versa, as both species now co-occur in UK orchards. Typhlodromips montdorensis is a candidate for introduction into the UK as a glasshouse biological control agent. The ability of T. montdorensis to feed on the widely used N. californicus was investigated to identify possible intraguild predation, which might influence the effectiveness of either or both species as predators of Tetranychus urticae. Both N. californicus and T. pyri consumed larval stages of each other, but in choice experiments both showed a preference for T. urticae. Both N. californicus and T. montdorensis also fed on each other, but whereas N. californicus again showed a preference for T. urticae, T. montdorensis fed equally on T. urticae and N. californicus. Interactions between N. californicus and T. pyri and N. californicus and T. montdorensis are discussed in relation to their effectiveness as biological control agents in the glasshouse and the natural control of spider mite in the field.  相似文献   

11.
A total of 49 groundcover plant species representing 47 genera in 22 families were identified from a survey of 5 pear orchards. Density of twospotted spider mite (Tetranychus urticae Koch) inhabiting these plants was estimated visually several times during the field season. Plants were ranked in 1 of 3 categories depending on mite densities found on these plants during the summer. T. urticae was found to be highly abundant (category 3) on 26 species, at lower densities on 10 species (category 2), and was rarely or never found on the remaining 12 species (category 1). Dispersal of mites from groundcover plants into trees was found to be highly variable within and between orchards. Within orchard dispersal appeared to be related to the distribution and abundance of category 3 host plants in the orchard. Variability between orchards may also be affected by groundcover management techniques and levels of acaricide resistance in T. urticae. The use of herbicides to control groundcover plants significantly increased the dispersal of T. urticae into the orchard trees.  相似文献   

12.
In three separate tests, 100 adult female Neoseiulus fallacis (Garman) (plus immatures) were released at five point locations across 1.6-m rows of strawberries to control twospotted spider mites, Tetranychus urticae Koch. Beginning in April, during 6–12 weeks, predators controlled pests locally and dispersed downwind by 20–30 m. Up to 100 m2 around each release point was colonized, and the entire 2.5 ha field was covered by predators by September. Distances dispersed by N. fallacis were similar within and across rows, suggesting that dispersal was primarily by aerial rather than by ambulatory means. Factors that affected dispersal were temperature, wind direction, density of spider mites, and mowing and flailing of foliage. An exponential model of dispersal was fitted to the data. On average, the area dispersed by N. fallacis doubled every 70 degree-days. From these results, a strategy of minimum release is suggested. To establish N. fallacis over a field in a single season, ca. 100 adult females per 1–2 m of row can be released before 1 July, after T. urticae have achieved 2–5 female adults per leaf. Releases should be 50 m apart and to the upwind side of the field. Selective sprays may be needed to suppress spider mites until predators gain control and disperse over the field.  相似文献   

13.
We examined the faunal composition and abundance of phytoseiid mites (Acari: Phytoseiidae) in apple orchards under different pest management systems in Hungary. A total of 30 apple orchards were surveyed, including abandoned and organic orchards and orchards where integrated pest management (IPM) or broad spectrum insecticides (conventional pest management) were applied. A total of 18 phytoseiid species were found in the canopy of apple trees. Species richness was greatest in the organic orchards (mean: 3.3 species/400 leaves) and the least in the conventional orchards (1.4), with IPM (2.1) and abandoned (2.7) orchards showing intermediate values. The phytoseiid community’s Rényi diversity displayed a similar pattern. However, the total phytoseiid abundance in the orchards with different pest management systems did not differ, with abundance varying between 1.8 and 2.6 phytoseiids/10 leaves. Amblyseius andersoni, Euseius finlandicus, and Typhlodromus pyri were the three most common species. The relative abundance of A. andersoni increased with the pesticide load of the orchards whereas the relative abundance of E. finlandicus decreased. The abundance of T. pyri did not change in the apple orchards under different pest management strategies; regardless of the type of applied treatment, they only displayed greater abundance in five of the orchards. The remaining 15 phytoseiid species only occurred in small numbers, mostly from the abandoned and organic orchards. We identified a negative correlation between the abundance of T. pyri and the other phytoseiids in the abandoned and organic orchards. However, we did not find any similar link between the abundance of A. andersoni and E. finlandicus.  相似文献   

14.
Two-spotted spider mites,Tetranychus urticae Koch, were sampled in peach orchards to quantify abundance in trees over different types of ground cover to document the dispersal of mites from orchard-floor plants to trees. Mite populations developed more quickly and with higher densities in trees over ground cover compared to bare ground, and specifically over covers of predominantly narrowleaf vetch,Vicia angustifolia Reichard. Orchard floor plants such asVicia, Geranium, Lamium, andLepidium contained relatively high densities of mites during early spring, and may have formed the source for later peach-tree infestation.Paper no. 11982 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, U.S.A.  相似文献   

15.
Field surveys were conducted from 2004 to 2007 to determine the species composition and relative abundance of natural enemies associated with colonies of either the citrus red mite, Panonychus citri, or the two spotted spider mite, Tetranychus urticae, in Valencian citrus orchards (eastern Spain). Fourteen species were recorded, six phytoseiid mites and eight insect predators. Two of them are reported for the first time on citrus in Spain and two more are first reports as predators associated with T. urticae. The community of predators associated with T. urticae and P. citri was almost identical, and the Morisita–Horn index of similarity between both natural enemy complexes was close to one, suggesting that predators forage on both pest species. Quantifying the presence of many known spider mites predators in Valencian citrus orchards is an important first step towards spider mite control. A challenge for future studies will be to establish conservation and/or augmentation management strategies for these predators, especially to improve T. urticae biological control.  相似文献   

16.
Laboratory experiments were conducted to determine the potential impact of the phytoseiid Euseius finlandicus, the mirid Blepharidopterus angulatus and the anthocorid Orius majusculus on the Typhlodromus pyri/Panonychus ulmi predator/prey relationship on apple. Euseius finlandicus consumed more immature spider mites than did T. pyri. When both phytoseiids were present and spider mite prey was abundant, there was no evidence of a negative interaction between the predators. In experiments where each predatory mite was confined with large numbers of the other predator, interspecific predation was exhibited by adults of each species on immatures of the other, but more so by E. finlandicus. In the predatory insect/phytoseiid experiments, when confined with spider mites and large numbers of T. pyri, both B. angulatus and O. majusculus consumed some T. pyri, but spider mites were the preferred prey. In experiments with B. angulatus, O. majusculus and T. pyri feeding on P. ulmi, there was no evidence of negative interactions between the predatory insects and T. pyri.  相似文献   

17.
Dispersal and gene flow of pesticide resistance traits in phytoseiid and tetranychid mites are discussed relative to their biologies and resistance management. The focus is on deciduous fruit-tree crops whereTyphlodromus pyri Scheuten andMetaseiulus occidentalis (Nesbitt) can effectively control spider mite pests. Oregon populations ofM. occidentalis were more dispersive thanT. pyri, as evidenced by movement to small apple trees placed inside and outside of commercial apple orchards. This difference was corroborated by the spatial distributions of organophosphate resistance in populations from sprayed orchards and nearby unsprayed habitats:T. pyri showed patchy, local patterns of resistance whileM. occidentalis showed more regional, homogeneous trends. Gene flow among populations was estimated from allozymic variation ofT. pyri. Intra- and inter-population genetic variation was high enough to prevent population differentiation. Thus, allozymic estimates of gene flow were higher than that indicated by pesticide resistance patterns.Dispersal inTetranychus urticae Koch is also discussed relative to resistance evolution. Immigration of resistant phenotypes from crops or other sprayed habitats can increase the frequency of resistance. Immigration of susceptible individuals from surrounding unsprayed habitat into a sprayed crop can slow resistance or lead to its reversion, depending on the level of gene flow between populations. Dispersal within crops can have the same effect if susceptibles come from a refuge. In pears, immigration of susceptibleT. urticae from nearby habitat and groundcover aided in reversion of organotin resistance. Experiments on resistance management tactics forT. urticae are discussed.  相似文献   

18.
The phytophagous mite Panonychus ulmi Koch has become a significant problem in Ontario vineyards. We attempted to introduce and establish populations of the predatory mite Typhlodromus pyri Scheuten for P. ulmi biological control. Grape leaves were transferred from a vineyard containing T. pyri in early summer 1998, by picking leaves from a donor vineyard and attaching them onto leaves in the release vineyard where T. pyri were extremely rare. Two release treatments were used with rates of 8.5 (1×) and 25.5 (3×) mobiles per vine. In the first season, T. pyri established in similar densities in both release treatments, which were significantly higher than controls. However, there were no differences among treatments in P. ulmi densities in 1998 as a result of predator release. During summer 1999, significantly fewer P. ulmi mite-days were observed in release plots compared to the control. Amblyseius fallacis (Garman) was common throughout the release vineyard in 1998 and in 1999, but appeared on the vines too late in the season to maintain low P. ulmi densities. T. pyri appeared to out-compete A. fallacis in 1999 because A. fallacis densities were significantly lower in plots where T. pyri had been released than in control plots. We conclude that T. pyri can be effective for P. ulmi biological control in Ontario vineyards and may be introduced by transferring leaves. In Europe, transferring prunings has been the standard method of inoculating T. pyri into new vineyards. Here we show that transferring leaves is another practical method.  相似文献   

19.
Tetranychus urticae is one of the most damaging tetranychid mites affecting clementine orchards in Spain, where natural control is insufficient. Furthermore, in clementine nurseries, tender foliage is highly susceptible to attack and natural enemies are almost always absent. Therefore, acaricides are often used indiscriminately. Alternative control measures are necessary, both in commercial orchards and clementine nurseries. In order to assess the efficacy of inoculative releases of N. californicus and P. persimilis to reduce T. urticae populations in young Spanish clementine plants, a semi-field experiment was conducted and repeated in three seasons (spring, summer and autumn). Phytoseiulus persimilis was highly effective in reducing both T. urticae infestations and the damage level inflicted on plants at both release rates evaluated (40 and 80 phytoseiids/plant) and all three periods considered. By contrast, N. californicus demonstrated low performance under certain conditions. The results of this study could be adapted and transferred to nurseries and young citrus plantations.  相似文献   

20.
Phytoseiid mites were sampled in a grapefruit orchard at various times of the day to study their diurnal and seasonal distributions in the tree canopy. Samples were collected on 14, 20 and 28 October 1999 at 2 h intervals from 0600 to 2200 h. Similar samples were collected in a grapefruit orchard at 3 h intervals from 0600 to 2100 h on 9 and 16 March and on 17 and 24 August 2000 for phytoseiid mites. No differences in numbers of phytoseiid motiles were observed among the hours sampled in any of the three months. However, significant differences were observed in the number of phytoseiids per leaf based on location within the tree (eastern, western sides of the canopy or interior). Interior leaves collected in March and August 2000 had higher numbers of phytoseiids than exterior leaves taken from either the eastern or western sides of the tree canopy. Phytoseiids were more abundant in the March 2000 samples (mean = 1.10 phytoseiids/leaf) than in either October 1999 or August 2000 samples (mean = 0.16 and 0.19 phytoseiids/leaf, respectively). Prevalent phytoseiid species were Typhlodromalus peregrinus (Muma) (42.1%) and Iphiseiodes quadripilis (Banks) (50.4%) in October 1999, Typhlodromalus peregrinus (Muma) (76.2%) in March 2000, and Euseius mesembrinus (Dean) (54%) in August 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号