首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad‐leaved, deciduous broad‐leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad‐leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad‐leaved trees. Similarly, relative abundance of deciduous broad‐leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional‐type‐level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.  相似文献   

2.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

3.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   

4.
Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad‐leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J‐shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad‐leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small‐sized diameter growth. We concluded that evergreen broad‐leaved species were more susceptible to ice storms than deciduous broad‐leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen‐dominated broad‐leaved forests in this subtropical region in the long term. These results underscore the importance of long‐term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.  相似文献   

5.
植物叶片的非结构性碳水化合物(non-structural carbohydrates,NSC)不仅为植物的代谢过程提供重要能量,还能一定程度上反映植物对外界环境的适应策略。以温带针阔混交林(长白山)、温带阔叶林(东灵山)、亚热带常绿阔叶林(神农架)和热带雨林(尖峰岭)4种森林类型的树种为研究对象,利用蒽酮比色法测定了163种常见乔木叶片可溶性糖、淀粉和NSC(可溶性糖+淀粉)含量,探讨了不同森林类型植物叶片NSC的差异及其地带性变化规律。结果显示:(1)从森林类型上看,植物叶片NSC含量从北到南递减,即温带针阔混交林(170.79 mg/g)>温带阔叶林(100.27 mg/g)>亚热带常绿阔叶林(91.24 mg/g)>热带雨林(80.13 mg/g)。(2)从生活型上看,无论是落叶树还是阔叶树,其叶片可溶性糖、淀粉和NSC含量均表现为:温带针阔混交林>温带阔叶林>亚热带常绿阔叶林>热带雨林;北方森林叶片可溶性糖、淀粉和NSC含量均表现为落叶树种>常绿树种,或阔叶树种>针叶树种。(3)森林植物叶片NSC含量、可溶性糖与淀粉含量比值与年均温和年均降水量均呈显著负相关。研究表明,森林植物叶片可溶性糖、淀粉和NSC含量以及可溶性糖与淀粉含量比值均具有明显的从北到南递减的地带性规律;其NSC含量以及可溶性糖与淀粉含量比值与温度和水分均呈显著负相关的变化规律可能是植物对外界环境适应的重要机制之一。该研究结果不仅为阐明中国主要森林树种碳代谢和生长适应对策提供了数据基础,而且为理解区域尺度森林植被对未来气候变化的响应机理提供新的视角。  相似文献   

6.
山东植物区系的演变和来源   总被引:1,自引:0,他引:1  
1 现代植物区系山东省位于我国东部、黄河下游 ,北濒渤海 ,东临黄海 ,地理范围介于北纬 34°2 3′~38°2 4′,东经 1 1 4°4 8′~ 1 2 2°4 3′之间。全省总面积为 1 5.72万 km2 ,占全国总面积的 1 .6%。属暖温带季风气候 ,沿海比较湿润 ,地带性植被主要是暖温带落叶阔叶林和松、栎类针阔叶混交林。山东省在中国植物区系的分区地位隶属于泛北极植物区、中国 -日本森林植物亚区、华北植物地区 [1 ]。据最近研究统计 ,现有野生维管植物 1 47科、61 4属 ,约 1 547种 (包括变种 ,下同 )。其中蕨类植物 2 4科 39属 1 0 5种 ,裸子植物 3科 3属 …  相似文献   

7.
To quantify and assess the processes underlying community assembly and driving tree species abundance distributions(SADs) with spatial scale variation in two typical subtropical secondary forests in Dashanchong state‐owned forest farm, two 1‐ha permanent study plots (100‐m × 100‐m) were established. We selected four diversity indices including species richness, Shannon–Wiener, Simpson and Pielou, and relative importance values to quantify community assembly and biodiversity. Empirical cumulative distribution and species accumulation curves were utilized to describe the SADs of two forests communities trees. Three types of models, including statistic model (lognormal and logseries model), niche model (broken‐stick, niche preemption, and Zipf‐Mandelbrodt model), and neutral theory model, were estimated by the fitted SADs. Simulation effects were tested by Akaike's information criterion (AIC) and Kolmogorov–Smirnov test. Results found that the Fagaceae and Anacardiaceae families were their respective dominance family in the evergreen broad‐leaved and deciduous mixed communities. According to original data and random sampling predictions, the SADs were hump‐shaped for intermediate abundance classes, peaking between 8 and 32 in the evergreen broad‐leaved community, but this maximum increased with size of total sampled area size in the deciduous mixed community. All niche models could only explain SADs patterns at smaller spatial scales. However, both the neutral theory and purely statistical models were suitable for explaining the SADs for secondary forest communities when the sampling plot exceeded 40 m. The results showed the SADs indicated a clear directional trend toward convergence and similar predominating ecological processes in two typical subtropical secondary forests. The neutral process gradually replaced the niche process in importance and become the main mechanism for determining SADs of forest trees as the sampling scale expanded. Thus, we can preliminarily conclude that neutral processes had a major effect on biodiversity patterns in these two subtropical secondary forests but exclude possible contributions of other processes.  相似文献   

8.
We present a global assessment of the relationships between the short‐wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle‐leaf forests (ENF); evergreen broad‐leaf forests (EBF); deciduous needle‐leaf forests (DNF); deciduous broad‐leaf forests (DBF); and mixed‐forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short‐wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad‐leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select ‘pure’ pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.  相似文献   

9.
Variation in evergreen and deciduous species leaf phenology in Assam, India   总被引:1,自引:0,他引:1  
In the present study phenological activities such as leaf and shoot growth, leaf pool size and leaf fall were observed for 3 years (March 2007–March 2010) in 19 tree species (13 evergreen and 6 deciduous species) in a wet tropical forest in Assam, India. The study area receives total annual average rainfall of 2,318 mm of which most rain fall (>70 %) occurs during June–September. Both the plant groups varied significantly on most of the shoot and leaf phenology parameters. In general, growth in deciduous species initiated before the evergreen species and showed a rapid shoot growth, leaf recruitment and leaf expansion compared to evergreen species. Leaf recruitment period was significantly different between evergreen (4.2 months) and deciduous species (6.8 months). Shoot elongation rate was also significantly different for evergreen and deciduous species (0.09 vs. 0.14 cm day?1 shoot?1). Leaf number per shoot was greater for deciduous species than for evergreen species (34 vs. 16 leaves). The average leaf life span of evergreen species (328 ± 32 days) was significantly greater than that of deciduous species (205 ± 16 days). The leaf fall in deciduous species was concentrated during the winter season (Nov–Feb), whereas evergreens retained their leaves until the next growing season. Although the climate of the study area supports evergreen forests, the strategies of the deciduous species such as faster leaf recruitment rate, longer leaf recruitment time, faster shoot elongation rate during favorable growing season and short leaf life span perhaps allows them to coexist with evergreen species that have the liberty to photosynthesize round the year. Variations in phenological strategies perhaps help to reduce the competition among evergreen and deciduous species for resources in these forests and enable the coexistence of both the groups.  相似文献   

10.
11.
周博  范泽鑫  杞金华 《生态学报》2020,40(5):1699-1708
研究采用树木生长环在哀牢山中山湿性常绿阔叶林持续9年(2009—2017年)监测了2个常绿树种(厚皮香,Ternstroemia gymnanthera;南亚枇杷,Eriobotrya bengalensis)和2个落叶树种(西桦,Betula alnoides;珍珠花,Lyonia ovalifolia)的树干月生长量,采用逻辑斯蒂生长模型(Logistic model)模拟树木径向生长量和物候参数,并分析了年、季尺度上径向生长与主要气候因子的关系。结果表明:1)4个树种年平均生长量为6.3 mm,落叶树种年平均生长量(10.6 mm/a)显著高于常绿树种(3.0 mm/a);2)雨季(5—10月)是哀牢山中山湿性常绿阔叶林树木生长的主要时期,4个树种雨季平均生长量为5.9 mm,占全年总生长量的93%,其中落叶树种雨季生长量占全年的96%,而常绿树种雨季生长量占全年的86%;3)常绿树种生长季长度为169天,长于落叶树种(137天),而落叶树种最大生长速率(0.14 mm/d)显著高于常绿树种(0.03 mm/d),最大径向生长速率能很好地预测树种年生长量;4)低温、雾日和光合有效辐射是影响哀牢山亚热带常绿阔叶林4个研究树种径向生长的重要环境因子,其中温度对常绿树种径向生长具有显著影响,而雨日、雾日与空气湿度等水分因子对落叶树种径向生长更为重要。常绿树种年生长量对旱季气候因子的响应相比落叶树种更为敏感,树木旱季生长量除了受低温限制外,也受到水分供给的影响。气候变化可能改变不同物候类型树种在哀牢山中山湿性常绿阔叶林中的生长状态与分布格局。  相似文献   

12.
The mechanisms underlying elevation patterns in species and phylogenetic diversity remain a central issue in ecology and are vital for effective biodiversity conservation in the mountains. Gongga Mountain, located in the southeastern Qinghai–Tibetan Plateau, represents one of the longest elevational gradients (ca. 6,500 m, from ca. 1,000 to 7,556 m) in the world for studying species diversity patterns. However, the elevational gradient and conservation of plant species diversity and phylogenetic diversity in this mountain remain poorly studied. Here, we compiled the elevational distributions of 2,667 native seed plant species occurring in Gongga Mountain, and estimated the species diversity, phylogenetic diversity, species density, and phylogenetic relatedness across ten elevation belts and five vegetation zones. The results indicated that species diversity and phylogenetic diversity of all seed plants showed a hump‐shaped pattern, peaking at 1,800–2,200 m. Species diversity was significantly correlated with phylogenetic diversity and species density. The floras in temperate coniferous broad‐leaved mixed forests, subalpine coniferous forests, and alpine shrublands and meadows were significantly phylogenetically clustered, whereas the floras in evergreen broad‐leaved forests had phylogenetically random structure. Both climate and human pressure had strong correlation with species diversity, phylogenetic diversity, and phylogenetic structure of seed plants. Our results suggest that the evergreen broad‐leaved forests and coniferous broad‐leaved mixed forests at low to mid elevations deserve more conservation efforts. This study improves our understanding on the elevational gradients of species and phylogenetic diversity and their determinants and provides support for improvement of seed plant conservation in Gongga Mountain.  相似文献   

13.
Global trends in senesced-leaf nitrogen and phosphorus   总被引:1,自引:0,他引:1  
Aim Senesced‐leaf litter plays an important role in the functioning of terrestrial ecosystems. While green‐leaf nutrients have been reported to be affected by climatic factors at the global scale, the global patterns of senesced‐leaf nutrients are not well understood. Location Global. Methods Here, bringing together a global dataset of senesced‐leaf N and P spanning 1253 observations and 638 plant species at 365 sites and of associated mean climatic indices, we describe the world‐wide trends in senesced‐leaf N and P and their stoichiometric ratios. Results Concentration of senesced‐leaf N was highest in tropical forests, intermediate in boreal, temperate, and mediterranean forests and grasslands, and lowest in tundra, whereas P concentration was highest in grasslands, lowest in tropical forests and intermediate in other ecosystems. Tropical forests had the highest N : P and C : P ratios in senesced leaves. When all data were pooled, N concentration significantly increased, but senesced‐leaf P concentration decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). The N : P and C : P ratios also increased with MAT and MAP, but C : N ratios decreased. Plant functional type (PFT), i.e. life‐form (grass, herb, shrub or tree), phylogeny (angiosperm versus gymnosperm) and leaf habit (deciduous versus evergreen), affected senesced‐leaf N, P, N : P, C : N and C : P with a ranking of senesced‐leaf N from high to low: forbs ≈ shrubs ≈ trees > grasses, while the ranking of P was forbs ≈ shrubs ≈ trees < grasses. The climatic trends of senesced‐leaf N and P and their stoichiometric ratios were similar between PFTs. Main conclusions Globally, senesced‐leaf N and P concentrations differed among ecosystem types, from tropical forest to tundra. Differences were significantly related to global climate variables such as MAT and MAP and also related to plant functional types. These results at the global scale suggest that nutrient feedback to soil through leaf senescence depends on both the climatic conditions and the plant composition of an ecosystem.  相似文献   

14.
 九龙山位于浙江省遂昌县西南部,北纬28˚21′,东经118˚52′。土地面积约75km2。主峰海拔1724m。植物种类丰富,初步统计约有种子植物143科、584属、1149种。植物区系起源古老,地理成分以热带、亚热带成分组成为主。本文用数值分类NTS专用软件在IBM—PC型计算机进行数值分类。主要有6个植被型:常绿阔叶林,常绿、落叶阔叶混交林,落叶阔叶林,山顶矮林,针叶林和竹林。常绿阔叶林为本区地带性植被,常绿、落叶阔叶混交林为本区主要的植被类型。  相似文献   

15.
Aim   Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in plants, but the patterns of nutrient resorption at the global scale are unknown. Because soil nutrients vary along climatic gradients, we hypothesize that nutrient resorption changes with latitude, temperature and precipitation.
Location   Global.
Methods   We conducted a meta-analysis on a global data set collected from published literature on nitrogen (N) and phosphorus (P) resorption of woody plants.
Results    For all data pooled, both N resorption efficiency (NRE) and P resorption efficiency (PRE) were significantly related to latitude, mean annual temperature (MAT) and mean annual precipitation (MAP): NRE increased with latitude but decreased with MAT and MAP. In contrast, PRE decreased with latitude but increased with MAT and MAP. When functional groups (shrub versus tree, coniferous versus broadleaf and evergreen versus deciduous) were examined individually, the patterns of NRE and PRE in relation to latitude, MAT and MAP were generally similar.
Main conclusions   The relationships between N and P resorption and latitude, MAT and MAP indicate the existence of geographical patterns of plant nutrient conservation strategies in relation to temperature and precipitation at the global scale, particularly for PRE, which can be an indicator for P limitation in the tropics and selective pressure shaping the evolution of plant traits. Our results suggest that, although the magnitude of plant nutrient resorption might be regulated by local factors such as substrate, spatial patterns are also controlled by temperature or precipitation.  相似文献   

16.
Disentangling the relative roles of biotic and abiotic forces influencing forest structure, function, and local community composition continues to be an important goal in ecology. Here, utilizing two forest surveys 20‐year apart from a Central American dry tropical forest, we assess the relative role of past disturbance and local climatic change in the form of increased drought in driving forest dynamics. We observe: (i) a net decrease in the number of trees; (ii) a decrease in total forest biomass by 7.7 Mg ha?1 but when calculated on subquadrat basis the biomass per unit area did not change indicating scale sensitivity of forest biomass measures; (iii) that the decrease in the number of stems occurred mainly in the smallest sizes, and in more moist and evergreen habitats; (iv) that there has been an increase in the proportion of trees that are deciduous, compound leaved and are canopy species, and a concomitant reduction in trees that are evergreen, simple‐leaved, and understory species. These changes are opposite to predictions based on recovery from disturbance, and have resulted in (v) a uniform multivariate shift from a more mesic to a more xeric forest. Together, our results show that over relatively short time scales, community composition and the functional dominance may be more responsive to climate change than recovery to past disturbances. Our findings point to the importance of assessing proportional changes in forest composition and not just changes in absolute numbers. Our findings are also consistent with the hypothesis that tropical tree species exhibit differential sensitivity to changes in precipitation. Predicted future decreases in rainfall may result in quick differential shifts in forest function, physiognomy, and species composition. Quantifying proportional functional composition offers a basis for a predictive framework for how the structure, and diversity of tropical forests will respond to global change.  相似文献   

17.
This study attempts to understand the biogeographic history of the Western Ghats forests by investigating decoupling between phylogenetic and taxonomic diversity. We specifically test whether the deciduous forests have been recently established, whether the southern region was a refuge, and whether the deciduous and evergreen forest species have disparate evolutionary histories. We used species composition data from 23 forest types along the Western Ghats for all woody angiosperms above 10‐cm diameter at breast height. Forests were broadly grouped as either evergreen or deciduous. Mean phylogenetic distances corrected for species richness and mean phylogenetic beta diversity corrected for shared species were assessed using z‐scores from null distributions. Null distributions were generated by randomizing the species relationships on the phylogeny. We found that all evergreen forests showed a greater phylogenetic diversity as compared with null expectations. Deciduous forests showed the inverse pattern. Within the evergreen belt, there was a decreasing phylogenetic diversity from south to north, as predicted by the southern refuge hypothesis. The phylogenetic beta diversity across evergreen–deciduous forests was lesser than the null expectation, whereas it was much higher across forests within the evergreen belt. This study provides the first phylogenetic evidence for the antiquity of evergreen forests as well as the southern refuge hypothesis in the Western Ghats. The deciduous forests species have shared evolutionary histories with the evergreen forest species, suggesting multiple shifts between evergreen and deciduous states through the lineages. Conversely, the evergreen species exhibited a disparate evolutionary history across these forests, possibly owing to sharper ecological or climatic gradients.  相似文献   

18.
暖温带落叶阔叶林冠层对降水的分配作用   总被引:17,自引:0,他引:17       下载免费PDF全文
 对1996年生长季节中两种落叶阔叶林冠层对降水的分配各分量的测定和分析表明:降水在辽东栎林冠层中的分配为:干流量S,66.7mm;透流量T,539.3mm;截留量I,117.6mm;分别占同期降水量的9.2%、74.5%和16.3%。混交林对降水的分配为:干流量S,32.8mm(4.5%);透流量T;555.9mm(76.8%);截留量I,134.9mm(18.6%)。各分量与降水特性的多元回归的结果表明:干流量S与降水量P和前24小时降水量P1之间呈显著正相关关系;透流量T与降水量P和最大雨强M正相关显著。  相似文献   

19.
Aim To test whether fire contributed to the expansion and compositional change of evergreen forests in the Mediterranean region during the Holocene. Location The peri‐Adriatic region, encompassing the Italian peninsula, Sicily and the western and southern Balkans between latitudes 46° and 37° N. Methods New high‐resolution pollen and microscopic charcoal data from Lago dell’Accesa (Tuscany, Italy) were used to estimate the response of the evergreen oak, Quercus ilex L., to fire during its expansion phase at 8500 cal. yr bp . The data were compared with the pollen and charcoal series from other Mediterranean sites (Lago di Massaciuccoli in Tuscany, Malo Jezero in Croatia, Biviere di Gela in Sicily) and analysed using numerical techniques (redundancy analysis, detrended canonical correspondence analysis) to identify long‐term fire–vegetation linkages and the degree of compositional change. Results Microscopic charcoal and pollen of evergreen oaks were negatively correlated during the period of quasi‐natural fire regime (Mesolithic, 10,000–8000 cal. yr bp ). In addition, there was no such positive correlation during periods when the fire regime was potentially more influenced by people (Neolithic–Bronze Age, 8000–3000 cal. yr bp ). Compared with inland sites, coastal sites that are currently located at a distinct ecotone showed more compositional change. Main conclusions The analyses suggest that climatic change, without an additional effect of fire regimes, favoured the expansion and compositional change of evergreen forests across the peri‐Adriatic region. Strikingly different patterns occurred along a north–south gradient. In the north (Tuscany and Croatia, meso‐Mediterranean belt), Q. ilex replaced deciduous forests when conditions became drier; in the south (Sicily, thermo‐Mediterranean belt) the species replaced maquis or steppe vegetation when climatic conditions became moister. We conclude that the projected increase in fire activity may lead to the loss of most of the remaining relict forests of Q. ilex in southern Europe.  相似文献   

20.
黄土高原不同植被覆被类型NDVI对气候变化的响应   总被引:8,自引:0,他引:8  
刘静  温仲明  刚成诚 《生态学报》2020,40(2):678-691
植被与气候是目前研究生态与环境的重要内容。为探究黄土高原地区植被与气候因子之间的响应机制,利用线性趋势分析、Pearson相关分析、多元线性回归模型以及通径分析的方法,对黄土高原2000—2015年全区和不同植被覆被类型区内NDVI与气候因子的变化趋势以及相互作用关系进行分析。植被覆被分类数据和植被指数数据分别来源于ESA CCI-LC(The European Space Agency Climate Change Initiative Land Cover)以及MODND1T/NDVI(Normalized Difference Vegetation Index)。结果表明:(1) 2000—2015年黄土高原全区植被年NDVI_(max)显著增加的区域占总面积的74.25%,不同植被覆被类型年NDVI_(max)分别为常绿阔叶林常绿针叶林落叶阔叶林落叶针叶林镶嵌草地农田镶嵌林地草地灌木,并且都呈显著增加趋势,其中常绿阔叶林和农田增加幅度最大,为0.012/a。(2)黄土高原全区NDVI与气温、日照、降水和相对湿度等气候因子之间没有显著相关性,但在不同植被覆被类型区,气候因子对NDVI存在显著作用,且不同植被覆被类型差异明显。(3)在全区和不同植被覆被类型区NDVI仅对降水的响应比较一致,气温无论在整个区域尺度还是不同植被覆被类型区对植被的影响均不显著。(4)常绿阔叶林、落叶阔叶林、常绿针叶林及镶嵌林地等以乔木为主的植被覆被类型受年均相对湿度和年总日照时数的显著负效应驱动,草地、镶嵌草地等以草本为主的植被覆被类型则受到年总降水量的显著正效应影响。这说明对植被类型进行区分,更有利于揭示气候对植被的作用机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号