首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Let F(x,y)F(x,y) be a polynomial over a field KK and mm a nonnegative integer. We call a polynomial gg over KK an mm-near solution of F(x,y)F(x,y) if there exists a c∈KcK such that F(x,g)=cxmF(x,g)=cxm, and the number cc is called an mm-value of F(x,y)F(x,y) corresponding to gg. In particular, cc can be 0. Hence, by viewing F(x,y)=0F(x,y)=0 as a polynomial equation over K[x]K[x] with variable yy, every solution of the equation F(x,y)=0F(x,y)=0 in K[x]K[x] is also an mm-near solution. We provide an algorithm that gives all mm-near solutions of a given polynomial F(x,y)F(x,y) over KK, and this algorithm is polynomial time reducible to solving one variable equations over KK. We introduce approximate solutions to analyze the algorithm. We also give some interesting properties of approximate solutions.  相似文献   

3.
We prove that a polynomial f∈R[x,y]fR[x,y] with tt non-zero terms, restricted to a real line y=ax+by=ax+b, either has at most 6t−46t4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y−ax−b∈K[x,y]yaxbK[x,y] divides a lacunary polynomial f∈K[x,y]fK[x,y], where KK is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of ff, in the logarithm of the degree of ff, in the degree of the extension K/QK/Q and in the logarithmic height of aa, bb and ff.  相似文献   

4.
Let f(X,Y)∈Z[X,Y]f(X,Y)Z[X,Y] be an irreducible polynomial over QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to construct the algebraic extension containing one absolute factor of a polynomial of degree up to 400.  相似文献   

5.
6.
Assume that a program pp on input aa outputs bb. We are looking for a shorter program qq having the same property (q(a)=bq(a)=b). In addition, we want qq to be simple conditional to pp (this means that the conditional Kolmogorov complexity K(q|p)K(q|p) is negligible). In the present paper, we prove that sometimes there is no such program qq, even in the case when the complexity of pp is much bigger than K(b|a)K(b|a). We give three different constructions that use the game approach, probabilistic arguments and algebraic arguments, respectively.  相似文献   

7.
A real xx is called hh-bounded computable  , for some function h:N→Nh:NN, if there is a computable sequence (xs)(xs) of rational numbers which converges to xx such that, for any n∈NnN, at most h(n)h(n) non-overlapping pairs of its members are separated by a distance larger than 2-n2-n. In this paper we discuss properties of hh-bounded computable reals for various functions hh. We will show a simple sufficient condition for a class of functions hh such that the corresponding hh-bounded computable reals form an algebraic field. A hierarchy theorem for hh-bounded computable reals is also shown. Besides we compare semi-computability and weak computability with the hh-bounded computability for special functions hh.  相似文献   

8.
We present a dynamic comparison-based search structure that supports insertions, deletions, and searches within the unified bound. The unified bound specifies that it is quick to access an element that is near a recently accessed element. More precisely, if w(y)w(y) distinct elements have been accessed since the last access to element yy, and d(x,y)d(x,y) denotes the rank distance between xx and yy among the current set of elements, then the amortized cost to access element xx is O(minylog[w(y)+d(x,y)+2])O(minylog[w(y)+d(x,y)+2]). This property generalizes the working-set and dynamic-finger properties of splay trees.  相似文献   

9.
This paper deals with the existence and search for properly edge-colored paths/trails between two, not necessarily distinct, vertices ss and tt in an edge-colored graph from an algorithmic perspective. First we show that several versions of the s−tst path/trail problem have polynomial solutions including the shortest path/trail case. We give polynomial algorithms for finding a longest properly edge-colored path/trail between ss and tt for a particular class of graphs and characterize edge-colored graphs without properly edge-colored closed trails. Next, we prove that deciding whether there exist kk pairwise vertex/edge disjoint properly edge-colored s−tst paths/trails in a cc-edge-colored graph GcGc is NP-complete even for k=2k=2 and c=Ω(n2)c=Ω(n2), where nn denotes the number of vertices in GcGc. Moreover, we prove that these problems remain NP-complete for cc-edge-colored graphs containing no properly edge-colored cycles and c=Ω(n)c=Ω(n). We obtain some approximation results for those maximization problems together with polynomial results for some particular classes of edge-colored graphs.  相似文献   

10.
11.
This paper concerns construction of additive stretched spanners with few edges for nn-vertex graphs having a tree-decomposition into bags of diameter at most δδ, i.e., the tree-length δδ graphs. For such graphs we construct additive 2δ2δ-spanners with O(δn+nlogn)O(δn+nlogn) edges, and additive 4δ4δ-spanners with O(δn)O(δn) edges. This provides new upper bounds for chordal graphs for which δ=1δ=1. We also show a lower bound, and prove that there are graphs of tree-length δδ for which every multiplicative δδ-spanner (and thus every additive (δ−1)(δ1)-spanner) requires Ω(n1+1/Θ(δ))Ω(n1+1/Θ(δ)) edges.  相似文献   

12.
The ΔΔ-timed uniform consensus is a stronger variant of the traditional consensus and it satisfies the following additional property: every correct process terminates its execution within a constant time ΔΔΔ-timeliness), and no two processes decide differently (uniformity). In this paper, we consider the ΔΔ-timed uniform consensus problem in presence of fcfc crash processes and ftft timing-faulty processes, and propose a ΔΔ-timed uniform consensus algorithm. The proposed algorithm is adaptive in the following sense: it solves the ΔΔ-timed uniform consensus when at least ft+1ft+1 correct processes exist in the system. If the system has less than ft+1ft+1 correct processes, the algorithm cannot solve the ΔΔ-timed uniform consensus. However, as long as ft+1ft+1 processes are non-crashed, the algorithm solves (non-timed) uniform consensus. We also investigate the maximum number of faulty processes that can be tolerated. We show that any ΔΔ-timed uniform consensus algorithm tolerating up to ftft timing-faulty processes requires that the system has at least ft+1ft+1 correct processes. This impossibility result implies that the proposed algorithm attains the maximum resilience about the number of faulty processes. We also show that any ΔΔ-timed uniform consensus algorithm tolerating up to ftft timing-faulty processes cannot solve the (non-timed) uniform consensus when the system has less than ft+1ft+1 non-crashed processes. This impossibility result implies that our algorithm attains the maximum adaptiveness.  相似文献   

13.
We formalize paper fold (origami) by graph rewriting. Origami construction is abstractly described by a rewriting system (O,?)(O,?), where OO is the set of abstract origamis and ?? is a binary relation on OO, that models fold  . An abstract origami is a structure (Π,∽,?)(Π,,?), where ΠΠ is a set of faces constituting an origami, and ∽ and ?? are binary relations on ΠΠ, each representing adjacency and superposition relations between the faces.  相似文献   

14.
Matroid theory gives us powerful techniques for understanding combinatorial optimization problems and for designing polynomial-time algorithms. However, several natural matroid problems, such as 3-matroid intersection, are NP-hard. Here we investigate these problems from the parameterized complexity point of view: instead of the trivial nO(k)nO(k) time brute force algorithm for finding a kk-element solution, we try to give algorithms with uniformly polynomial (i.e., f(k)⋅nO(1)f(k)nO(1)) running time. The main result is that if the ground set of a represented linear matroid is partitioned into blocks of size ??, then we can determine in randomized time f(k,?)⋅nO(1)f(k,?)nO(1) whether there is an independent set that is the union of kk blocks. As a consequence, algorithms with similar running time are obtained for other problems such as finding a kk-element set in the intersection of ?? matroids, or finding kk terminals in a network such that each of them can be connected simultaneously to the source by ?? disjoint paths.  相似文献   

15.
16.
17.
We investigate the group key management problem for broadcasting applications. Previous work showed that, in handling key updates, batch rekeying can be more cost effective than individual rekeying. One model for batch rekeying is to assume that every user has probability pp of being replaced by a new user during a batch period with the total number of users unchanged. Under this model, it was recently shown that an optimal key tree can be constructed in linear time when pp is a constant and in O(n4)O(n4) time when p→0p0. In this paper, we investigate more efficient algorithms for the case p→0p0, i.e., when membership changes are sparse. We design an O(n)O(n) heuristic algorithm for the sparse case and show that it produces a nearly 2-approximation to the optimal key tree. Simulation results show that its performance is even better in practice. We also design a refined heuristic algorithm and show that it achieves an approximation ratio of 1+?1+? for any fixed ?>0?>0 and nn, as p→0p0. Finally, we give another approximation algorithm for any p∈(0,0.693)p(0,0.693) which is shown to be quite good by our simulations.  相似文献   

18.
The software package Qcompiler (Chen and Wang 2013) provides a general quantum compilation framework, which maps any given unitary operation into a quantum circuit consisting of a sequential set of elementary quantum gates. In this paper, we present an extended software OptQC  , which finds permutation matrices PP and QQ for a given unitary matrix UU such that the number of gates in the quantum circuit of U=QTPTUPQU=QTPTUPQ is significantly reduced, where UU is equivalent to UU up to a permutation and the quantum circuit implementation of each matrix component is considered separately. We extend further this software package to make use of high-performance computers with a multiprocessor architecture using MPI. We demonstrate its effectiveness in reducing the total number of quantum gates required for various unitary operators.  相似文献   

19.
We consider a two-edge connected, undirected graph G=(V,E)G=(V,E), with nn nodes and mm non-negatively real weighted edges, and a single source shortest paths tree (SPT) TT of GG rooted at an arbitrary node rr. If an edge in TT is temporarily removed, it makes sense to reconnect the nodes disconnected from the root by adding a single non-tree edge, called a swap edge  , instead of rebuilding a new optimal SPT from scratch. In the past, several optimality criteria have been considered to select a best possible swap edge. In this paper we focus on the most prominent one, that is the minimization of the average distance between the root and the disconnected nodes. To this respect, we present an O(mlog2n)O(mlog2n) time and O(m)O(m) space algorithm to find a best swap edge for every edge of TT, thus improving for m=o(n2/log2n)m=o(n2/log2n) the previously known O(n2)O(n2) time and space complexity algorithm.  相似文献   

20.
The maximal matching problem has received considerable attention in the self-stabilizing community. Previous work has given several self-stabilizing algorithms that solve the problem for both the adversarial and the fair distributed daemon, the sequential adversarial daemon, as well as the synchronous daemon. In the following we present a single self-stabilizing algorithm for this problem that unites all of these algorithms in that it has the same time complexity as the previous best algorithms for the sequential adversarial, the distributed fair, and the synchronous daemon. In addition, the algorithm improves the previous best time complexities for the distributed adversarial daemon from O(n2)O(n2) and O(δm)O(δm) to O(m)O(m) where nn is the number of processes, mm is the number of edges, and δδ is the maximum degree in the graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号